

VALUTAZIONE PREVISIONALE DI IMPATTO ACUSTICO

DOCUMENTO REDATTO SULLA BASE DEI VALORI LIMITE DI CUI AL D.P.C.M. 14 NOVEMBRE 1997

APRILE 2025

ZIGNAGO VETRO S.p.A.

Sede legale: Via Ita Marzotto n.8

30025 Fossalta di Portogruaro (VE)

Area di progetto: Stabilimento di Empoli,

Via Del Castelluccio n. 41, 50053 Empoli (FI)

Rev.	Motivo della modifica	Nome file	Redatto	Approvato	Data
00	Prima emissione	2021-147 IS Zignago VIAC previsionale Rev00.doc	RT	FV	22/09/2022
01	Aggiornamento a seguito richieste integrazioni	2021-147 IS Zignago VIAC previsionale Rev01_Def	RT	FV	30/03/2023
02	Aggiornamento relativamente alla costruzione nuovi magazzini	2025-073 IS Zignago VIAC previsionale Rev02_Def	RT/EL	FV	23/04/2025

PREMESSA

La presente relazione è stata redatta al fine di verificare l'impatto acustico in previsione dell'ampliamento degli impianti produttivi che la Zignago Vetro S.p.A. intende effettuare al proprio stabilimento di via del Castelluccio, n. 41, 50053 Empoli (FI).

In particolare, il presente documento si riferisce alla realizzazione dei nuovi magazzini, facenti parte di un più ampio progetto comprendente anche la realizzazione di un nuovo forno denominato "Forno 23".

In ogni caso, il presente documento è stato elaborato considerando solo la realizzazione dei nuovi magazzini.

A tale scopo, la Zignago Vetro S.p.A. si è avvalsa dell'assistenza tecnica della società Industria Servizi S.r.l., per effettuare una valutazione previsionale inerente agli impatti sul clima acustico, ai sensi della Legge 26 ottobre 1995, n° 447, "Legge quadro sull'inquinamento acustico" e sulla base dei valori limite di cui al D.P.C.M. 14 novembre 1997 "Determinazione dei valori limite delle sorgenti sonore".

Al fine di assolvere l'incarico affidato, ai fini della modellizzazione delle sorgenti e per identificare il rumore residuo, sono stati considerati i rilievi già svolti in data 2 febbraio 2022, tenendo conto che da febbraio 2022 alla data odierna non sono intervenute modifiche tali da giustificare un cambiamento dei livelli emissivi misurati.

I rilievi e la presente relazione tecnica sono stati effettuati da:

- ing. **Fabrizio Vitale**, iscritto all'albo degli ingegneri della Provincia di Livorno con il numero 1413 ed all'Elenco Nazionale dei Tecnici Competenti in Acustica ai sensi dell'art. 21 del D.Lgs. 42/2017 con il numero 7860:
- dott. **Edoardo Lombardi,** iscritto all'Elenco Nazionale dei Tecnici Competenti in Acustica ai sensi dell'art. 21 del D.Lgs. 42/2017 con il numero 12639;
- dott. **Riccardo Tuccoli**, in affiancamento.

Empoli (FI), 23 aprile 2025

DICHIARAZIONE SOSTITUTIVA DI ATTO DI NOTORIETA'

(Art. 4 Legge 4 gennaio 1968 n.15 - art. 3 comma 9 Legge 15 maggio 1997 n.127 e art. 2 D.P.R. 20 ottobre 1998 n. 403)

Il sottoscritto Silvio Marano, in qualità di Procuratore della Zignago Vetro S.p.A. con sede legale in via Ita Marzotto, n. 8, 30025 Fossalta di Portogruaro (VE) e Stabilimento produttivo in via del Castelluccio, n. 41, 50053 Empoli (FI), consapevole delle sanzioni penali, nel caso di dichiarazioni non veritiere e falsità negli atti, richiamate dall'art. 26 della Legge 4.1.68 n.15, dopo aver preso visione della presente relazione redatta dal Tecnico Ing. Fabrizio Vitale,

DICHIARA

che le informazioni e i dati contenuti nella suddetta documentazione per quanto di propria competenza corrispondono a verità.

IL DICHIARANTE

Empoli (FI), 23 aprile 2025

Si allega fotocopia firmata del documento di identità.

INDICE

1	N	ormativa di riferimento	5
2	D	escrizione del contesto e dei punti di rilievo	6
	2.1	CLIMA ACUSTICO DELL'AREA	8
	2.2	INDIVIDUAZIONE DELLE SORGENTI SONORE	8
	2.3	INDIVIDUAZIONE DEI RECETTORI POTENZIALMENTE DISTURBATI	ç
3	С	riteri di valutazione e strumentazione	_ 11
	3.1	STRUMENTAZIONE	_ 11
	3.2	RILIEVI FONOMETRICI	_ 12
	3.3	ANALISI DEI DATI E POST - PROCESSO	_ 14
	3.4	SOFTWARE DI SIMULAZIONE ACUSTICA "CADNA-A"	_ 15
4	Α	ree di classificazione	_ 16
5	R	isultati della simulazione	_ 19
	5.1	DESCRIZIONE DELLE SORGENTI SONORE	_ 19
	5.2	STIMA DEI LIVELLI DI PROPAGAZIONE ACUSTICA – STATO DI FATTO	_ 22
	5.3	STIMA DEI LIVELLI DI PROPAGAZIONE ACUSTICA – STATO DI PROGETTO	_ 28
6	С	onclusioni	_ 33
Α	LLEG	ATI	_ 34
Α	llegat	to 1: attestazione dei tecnici competenti e Certificato di conformità della strumentazione_	_ 35
Α	llegat	to 2: Valori limite D.P.C.M. 14/11/1997	_ 38
Α	llegat	co 3: Zonizzazione acustica del sito di riferimento	_40
Α	llegat	to 4: Misure	41

1 NORMATIVA DI RIFERIMENTO

Le attività descritte nella presente relazione sono state condotte ai sensi della seguente normativa di riferimento:

- Legge 26 ottobre 1995, n. 447 "Legge quadro sull'inquinamento acustico";
- Decreto del Presidente del Consiglio dei Ministri del 14 novembre 1997 "Determinazione dei valori limite delle sorgenti sonore";
- Decreto Ministeriale del 16 marzo 1998 recante le linee guida per le tecniche di rilevamento e di misurazione dell'inquinamento acustico;
- Legge regionale Toscana del 1° dicembre 1998, n° 89 e s.m.i., "Norme in materia di inquinamento acustico";
- Delibera regione Toscana 21.10.2013, n° 857, "Definizione dei criteri per la redazione della documentazione di impatto acustico e della relazione previsionale di clima acustico ai sensi dell'art. 12, comma 2 e 3 della LR n° 89/98 "Norme in materia di inquinamento acustico";
- Decreto Legislativo del 17 febbraio 2017, n° 42 "Disposizioni in materia di armonizzazione della normativa nazionale in materia di inquinamento acustico, a norma dell'articolo 19, comma 2, lettere a), b), c), d), e), f) e h) della legge 30 ottobre 2014, n. 161";
- Piano Comunale di Classificazione Acustica e successive varianti del comune di Empoli approvato con Deliberazione n.37 del 11 aprile 2005 e successive varianti.

2 DESCRIZIONE DEL CONTESTO E DEI PUNTI DI RILIEVO

La Zignago Vetro S.p.A. è fra i principali produttori di contenitori in vetro cavo in Italia e si pone a livello internazionale come una delle più importanti aziende nel proprio settore. I prodotti sono destinati prevalentemente ai mercati delle Bevande e Alimenti, della Cosmetica e Profumeria e dei Vetri Speciali.

Il vetro si adatta perfettamente ad un'economia circolare in quanto è riciclabile al 100%, per un numero infinito di volte e senza degradare la qualità del nuovo contenitore.

Il vetro derivante dalla raccolta differenziata dei rifiuti viene recuperato in appositi impianti, nei quali viene lavato e selezionato. Perde quindi la qualifica di "rifiuto" e torna ad essere un materiale adatto alla produzione, un tempo denominato dalla normativa "materia prima secondaria" (MPS), oggi "materiale che ha cessato la qualifica di rifiuto" (EoW - End of waste).

La Zignago Vetro ha acquisito il 51% della società Vetro Revet, per la quale è ipotizzabile la realizzazione di un nuovo impianto sul lato nord del complesso industriale attuale. La capacità produttiva del nuovo impianto potrebbe raddoppiare rispetto all'attuale che verrebbe dismesso in quanto particolarmente obsoleto. In questo modo si potrebbe aumentare notevolmente il riutilizzo del vetro da raccolta differenziata presso la sede di Empoli eliminando completamente il traffico dei mezzi pesanti atti al trasporto del vetro.

L'impegno di Zignago Vetro S.p.A. nel riciclo e nell'utilizzo del rottame trova riscontro negli importanti investimenti fatti negli anni in impianti per la raccolta e il trattamento del rottame di vetro: questo non rappresenta solo un impegno concreto del Gruppo nella riduzione dell'impatto ambientale, ma pone anche Zignago Vetro come forza trainante dell'economia circolare. Il vetro raccolto proveniente dal riciclo rappresenta quindi una priorità per il processo produttivo di Zignago Vetro e per l'intera industria del packaging in vetro.

La produzione ad oggi avviene a ciclo continuo, per 24 ore al giorno per 7 giorni a settimana per 52 settimane all'anno. L'impianto di produzione di vetro cavo (bottiglie e contenitori per bevande/alimenti) ha una capacità massima di produzione pari a262.800 tonnellate/anno di contenitori in vetro.

Lo stabilimento di Zignago Vetro S.p.A. è situato nella zona industriale del comune di Empoli (FI), a nord della Strada di Grande Comunicazione Firenze-Pisa-Livorno e ad ovest del centro abitato di Empoli, dal quale dista circa 2 km, in un'area prevalentemente pianeggiante.

Il progetto di ampliamento oggetto della presente valutazione previsionale riguarda la realizzazione di due nuovi magazzini, ad ovest rispetto all'attuale stabilimento, aventi ciascuno superficie pari a circa 30000 m² e altezza massima di 11 metri.

Figura 1: immagine satellitare dello stabilimento su larga scala

In Figura 2 è evidenziata l'area di progetto, situata ad ovest rispetto allo stabilimento Zignago Vetro.

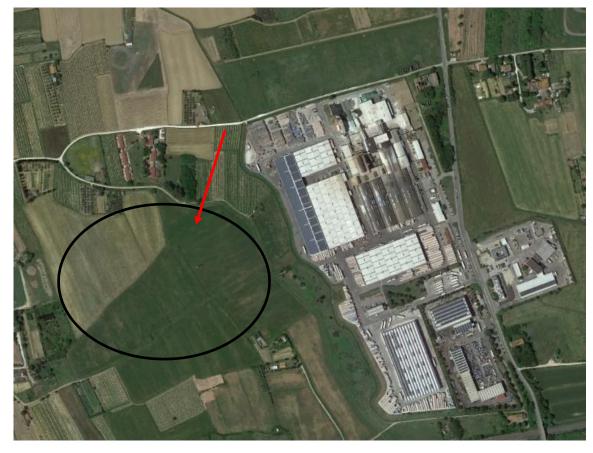


Figura 2: Indicazione della zona interessata dal progetto

Nelle aree adiacenti lo stabilimento sono assenti agglomerati abitativi di rilievo o recettori sensibili.

I siti limitrofi allo stabilimento di Zignago Vetro S.p.A. sono quelli riportati di seguito:

- NORD: sono presenti alcune attività commerciali sulla via Lucchese a 350 m circa dal confine nord di Zignago Vetro. È inoltre presente una piccola azienda agricola in via del Castelluccio.
- EST: sono presenti alcune abitazioni in via del Ponterotto e alcune strutture di proprietà di Alia
 Servizi Ambientali S.p.A. in via del Castelluccio.
- SUD: adiacente al perimetro di Zignago Vetro è presente una ditta di smaltimenti ecologici,
 "Mazzoni Ferro S.r.l". È inoltre presente la ferrovia.
- OVEST: nelle adiacenze nord-ovest è presente il canile comunale di Empoli mentre continuando ad est sono presenti alcune abitazioni ed il Cimitero di Marcignana.

2.1 CLIMA ACUSTICO DELL'AREA

Allo stato attuale, il clima acustico dell'area è caratterizzato principalmente:

- dalle emissioni dovute alle attività industriali della Zignago Vetro S.p.A.;
- dalle emissioni dovute alle attività industriali vicine;
- dal traffico veicolare locale;
- dal traffico ferroviario.

2.2 INDIVIDUAZIONE DELLE SORGENTI SONORE

Allo stato attuale la Zignago Vetro è autorizzata all'utilizzo di n. 2 forni fusori (Forno 21 e Forno 22) e una capacità produttiva massima teorica di 720 tonnellate al giorno.

Il progetto considerato in questa valutazione previsionale riguarda la realizzazione di due nuovi magazzini aventi superficie pari a circa 30.000 m² ciascuno. Così come i magazzini già esistenti, i nuovi magazzini non saranno sorgenti di rumore particolarmente rilevanti. Benché il rumore da essi emesso provenga prevalentemente da porte e finestre dal punto di vista acustico i magazzini sono stati modellizzati come sorgenti piane verticali continue (si vedano a tal proposito il paragrafo 3.4 ed il paragrafo 5).

La capacità produttiva del sito non varierà a seguito della realizzazione del progetto e quindi non è ipotizzabile un aumento del traffico veicolare. Semmai si prevede una diminuzione del traffico veicolare conseguente alla realizzazione dei nuovi magazzini. Questi ultimi, infatti, essendo adiacenti allo stabilimento Zignago Vetro, consentiranno di mantenere in loco merci che ad oggi vengono trasportate da e presso altri magazzini dislocati altrove. Pertanto, il traffico veicolare complessivo insistente sull'area diminuirà in quanto il prodotto sarà spedito direttamente dallo stabilimento verso il cliente evitando una ulteriore spedizione dallo stabilimento produttivo al magazzino di logistica attualmente esistente.

All'interno di questo contesto possiamo affermare che le emissioni sonore prevalenti sono costituite dai ventilatori di raffreddamento dei forni e dai ventilatori dell'aria di combustione.

2.3 INDIVIDUAZIONE DEI RECETTORI POTENZIALMENTE DISTURBATI

Nei dintorni dello stabilimento di Zignago Vetro S.p.A. non sono presenti agglomerati urbani di rilevo in quanto è una zona ad uso prevalentemente agricolo. Il centro abitato più vicino al perimetro aziendale è Marcignana, frazione del comune di Empoli distante circa 700 metri da Zignago Vetro.

Nei terreni limitrofi all'azienda possiamo perciò individuare altre realtà aziendali e singoli edifici abitativi.

Come illustrato nella **Figura 3**, i recettori prossimi all'azienda sono:

- R1: Azienda "Alia Servizi Ambientali", composta da un edificio con uffici aperti al pubblico ed un'isola ecologica sul retro. È situata in via del Castelluccio di fronte all'ingresso di Zignago Vetro.
 In linea d'aria dista circa 200 metri dalla zona produttiva dei forni fusori (Classe V)
- R2: Abitazioni civili situate in via del Ponterotto, ad una distanza in linea d'aria di circa 200 metri dalle sorgenti di rumore di Zignago Vetro (Classe IV)
- R2-bis: Abitazioni civili situate in via del Ponterotto, ad una distanza in linea d'aria di circa 230 metri dalle sorgenti di rumore di Zignago Vetro (Classe III)
- R3: Azienda Agricola "Il Castelluccio" di Mugnaini Elio, situata in Via del Castelluccio 56, a circa 320 metri in linea d'aria dalle sorgenti di rumore di Zignago Vetro (Classe IV)
- R4: Rivendita di prodotti ittici "Ilio pesca", situata in via lucchese 219/221 a circa 320 metri in linea d'aria dalle sorgenti di rumore di Zignago Vetro (Classe IV)
- R5: Canile municipale di Empoli di via del Castelluccio dei Falaschi. Trattasi di un insieme di piccole strutture adibite a ricovero per cani. Dista circa 250 metri dalla futura zona di costruzione del terzo forno (Classe III)
- R6: Cimitero di Marcignana, situati in via Val d'Elsa a circa 680 metri in linea d'aria dalle sorgenti di rumore di Zignago Vetro (Classe III)
- R7: Azienda "Mazzoni Ferro S.r.l", situata in via del Castelluccio 37/39 e confinante con Zignago Vetro in direzione sud. Dista circa 250 metri in linea d'aria con le principali sorgenti di rumore di Zignago Vetro (Classe VI)
- R8: Fabbricato civile situato in posizione sud-ovest dello stabilimento di Zignago Vetro, a 320 metri in linea d'aria dalle sorgenti di rumore di Zignago Vetro (Classe IV)

Figura 3 Indicazione dello stabilimento di Zignago Vetro e dei principali recettori

3 CRITERI DI VALUTAZIONE E STRUMENTAZIONE

La presente verifica è stata effettuata in base alle indicazioni fornite dal D.P.C.M. 14 novembre 1997, per quanto riguarda i limiti di immissione e di qualità, e sulla base delle indicazioni fornite nel D.M. 16 marzo 1998, per quanto riguarda le tecniche di rilevamento e di misurazione.

In particolare, si è tenuto conto di:

- 1. Sorgenti di rumore;
- 2. Durata dell'emissione,
- 3. Fattori operativi o ambientali che possono influenzare l'emissione di rumore;
- 4. Effetti di interferenza dovuti alla conformazione ambientale del sito.
- 5. Layout dell'azienda e del ciclo produttivo

3.1 STRUMENTAZIONE

I rilievi fonometrici sono stati eseguiti con la seguente strumentazione:

> Fonometro integratore Solo Precision

Fonometro integratore Solo Precision è un analizzatore in tempo reale in banda larga, ad ottave e terzi d'ottava, rispondente alle specifiche del decreto 16/03/98 sulle misure ambiente (L.447/95) conforme alle norme EN-60651 (IEC-651), EN-60804 (IEC-804) con sezioni filtri EN-61260 (IEC-1260). I calibratori utilizzati per le calibrazioni risultano conformi alla IEC-942/88.

Il fonometro Solo Precision consente la misura contemporanea di molteplici parametri con diverse costanti di tempo e ponderazione. In aggiunta i dati possono essere post-processati, su elaboratore, per l'analisi delle "componenti armoniche" e la rappresentazione grafica delle "time history" dei rilievi effettuati.

Il fonometro Solo Precision è stato tarato in data 08 luglio 2021 dal centro di taratura LAT n° 146, con regolare certificato di taratura n. 13349.

Le catene di misurazione risultano essere composte da:

Fonometro Solo Precision s/n 11514

Preamplificatore PRE 21S s/n 10791

Microfono MCE 212 s/n 61840

Le calibrazioni degli strumenti sopra citati sono state effettuate come indicato dalla norma UNI 9432:2011, prima dell'inizio di ogni campagna di misura ed al termine delle misure stesse non rilevando mai scostamenti dal valore di riferimento, utilizzando il calibratore di classe 1:

Calibratore Cal 21 s/n 34634259

Il calibratore Cal21 è stato tarato in data 08 luglio 2021 dal centro di taratura LAT n° 146, che ha rilasciato regolare certificato di taratura n. 13350.

Una copia degli attestati di taratura e dei certificati di conformità relativi ai due strumenti è riportata in **Allegato 1**.

3.2 RILIEVI FONOMETRICI

Le misurazioni fonometriche sono state effettuate seguendo le indicazioni di cui all'allegato B del D.M. 16 marzo 1998, in particolare sono stati adottati i seguenti accorgimenti:

- 1. È stato misurato il livello sonoro continuo equivalente ponderato in curva A (L_{Aeq}) .
- 2. Tale misura è stata eseguita per integrazione continua, misurando il rumore ambientale durante l'intero tempo di misura (TM), all'interno del periodo di riferimento (TR).
- 3. I rilevamenti sono stati effettuati con un tempo di misura significativo (tipicamente di 20 minuti primi) e, comunque, sufficiente ad ottenere una valutazione del fenomeno sonoro esaminato.
- 4. La misura è stata arrotondata a 0,5 dB(A).
- 5. Il microfono è stato orientato verso la sorgente di rumore e collocato nell'interno dello spazio fruibile da persone e, comunque a non meno di 1 m dalla facciata di edifici, qualora presenti. E' stato fatto uso di un cavalletto di appoggio in modo tale che il microfono fosse posto ad un'altezza intorno a 1,50 metri dal suolo, ritenendola in accordo con la reale posizione del ricettore.
- 6. Le misurazioni sono state eseguite in assenza di precipitazioni atmosferiche, di nebbia e di neve; la velocità del vento non era superiore ai 5 m/s.
- 7. Il fonometro utilizzato è stato sempre munito di cuffia antivento.

Le grandezze rilevate per consentire le successive analisi e valutazioni sono:

- Leq (A) in dB(A): Livello continuo equivalente ponderato "A" nel periodo di misura;
- Leq (L) in dB(L): Livello continuo equivalente Lineare nel periodo di misura;
- Spettro in terzi d'ottava del Leq (L) e valore in dB(L) raggiunto da ciascuna banda;
- Spettro in terzi d'ottava del L fast-min e valore in dB(L) del livello minimo di ogni banda in terzi d'ottava con costante di tempo "Fast".
- Ln 95% livello percentile in db(A) e dB(L): rappresenta il livello minimo superato per il 95% del tempo di misura. Esso è desumibile da analisi statistica cumulativa con lettura eseguita con risposta "Fast". In presenza di rumore stazionario (quale è il caso del rumore dell'impianto di Zignago Vetro S.p.A.) è il parametro che meglio descrive il livello di rumore ambientale degli impianti in presenza di fenomeni transitori.
- Registrazione continua del valore del Leq(A) durante il periodo di misura (Time History).

La campagna di misure è stata condotta in modo da valutare, per quanto possibile, i contributi delle varie sorgenti di rumore separando gli effetti di ciascuna sorgente di rumore.

Per gli impianti operanti a ciclo continuo il Livello di immissione Differenziale (L_D) può essere dedotto per via analitica, operando le seguenti assunzioni:

i. si presume che il livello di rumore ambientale (L_{Aeq}) sia determinato come somma del rumore del rumore residuo (L_R) e del rumore emesso dalle sorgenti disturbanti (L_E) e pertanto sia:

$$L_{Aeq}=L_R+L_E$$

e che pertanto (LR) sia determinabile (come differenza tra le energie) :

$$L_R = L_{Aeq} - L_E$$

applicando il seguente algoritmo di calcolo:

$$L_R = L_{A_{eq}} - L_E = 10 \log \left[10^{0.1 L_{A_{eq}}} - 10^{0.1 L_E} \right] dB$$

 si presume che l'unica sorgente di disturbo stazionario che immette rumore nell'ambiente sia rappresentata dagli impianti ossia:

$$L_E = \sum_{i=1}^n L_{E_i} = L_{E_1}$$

- iii. si presume, visto che la sorgente disturbante è di tipo stazionario, che il livello di emissione dell'impianto (L_E) coincida con il livello percentile Ln 95% misurato in prossimità del ricettore;
- iv. Il L_D viene calcolato come differenza tra il L_{Aeq} Corretto ed il L_R:

$$L_{\scriptscriptstyle D} = L_{\scriptscriptstyle AeqCorretto} - L_{\scriptscriptstyle R}$$

3.3 Analisi dei dati e post - processo

Al fine di individuare il valore di immissione corretto Lc risulta necessario valutare:

- presenza di componenti impulsive (K_I);
- presenza di componenti tonali (K_T);
- presenza di componenti tonali in bassa frequenza (K_B).

Il livello di immissione corretto (Lc) derivante sarà dato da:

$$Lc = L_A + K_I + K_T + K_B$$

dove:

L_A = livello di rumore ambientale;

K_I = fattore correttivo per presenza di componenti impulsive = 3 dB

 K_T = fattore correttivo per presenza di componenti tonali = 3 dB

K_B = fattore correttivo per presenza di componenti tonali in bassa frequenza = 3 dB

Si ricorda che, ai sensi del D.M. 16 marzo 1998, <u>il fattore correttivo per componenti tonali in bassa</u> frequenza si applica solo ai rilievi nel periodo di riferimento notturno.

N.B. I fattori correttivi non si applicano, ovviamente, al livello di rumore ambientale residuo.

Tutte le postazioni sono state indagate per valutare la presenza di componenti tonali o in bassa frequenza. I risultati sono riportati in **Allegato 5**.

3.4 Software di simulazione acustica "Cadna-A"

Per la simulazione del livello di rumore ambientale derivato dalle attività produttive di Zignago Vetro S.p.A. è stato utilizzato il software di simulazione acustica Cadna-A (Computer Aided Noise Abatement), prodotto dalla società Datakustik.

Si tratta di uno dei più avanzati software di simulazione acustica, che sfrutta diversi metodi di calcolo (tracciamento dei raggi, modello a particelle, modello di campo statistico), integrandoli uno con l'altro per ottimizzare i risultati a seconda delle caratteristiche dell'ambiente. L'utilizzo di un software del genere è estremamente utile qualora si debba svolgere un calcolo previsionale dei livelli acustici in un dato ambiente e nelle condizioni operative richieste.

Cadna-A, infatti, è in grado di tener conto della diffusione, riflessione, diffrazione di tutti i raggi che trasportano l'energia sonora in ambienti aperti (oppure anche in locali chiusi, nella versione Cadna-R). Ad ogni edificio presente negli specifici layout costruiti per la simulazione sono associati un materiale e una forma geometrica, con curva caratteristica di assorbimento, di diffusione sonora, di trasmissione e di eventuale schermaggio. Le sorgenti sonore sono definibili tenendo conto della potenza dell'emissione nelle diverse bande d'ottava (o terzi di ottava) e della specifica direzionalità.

Tra i molti software in grado di produrre simulazioni del genere Cadna-A implementa più metodi e richiede tempi di calcolo maggiori arrivando però a riprodurre il campo acustico in tutti i punti dell'ambiente (le mappe a colori non sono ottenute per interpolazione fra le posizioni dei recettori) permettendo eventualmente di scegliere diversi materiali di costruzione in base alla tipologia di assorbimento fornita ed ai risultati previsti dalla simulazione.

4 AREE DI CLASSIFICAZIONE

Il Comune di Empoli ha approvato il Piano Comunale di Classificazione Acustica definitivo con adozione C.C. n. 21 del 27/02/2006 e approvazione C.C. n. 17 del 26/04/2006 e successivamente aggiornato con delibere n.24 del 09/04/2014, n.19 del 19/11/2018 e n.92 del 29/09/2021. Tale P.C.C.A. è presente e pubblicato ufficialmente nel sistema informativo territoriale e riporta l'area dove sorge lo stabilimento in oggetto come **area di classe VI** ai sensi del D.P.C.M. 14 novembre 1997.

Nella successiva tabella sono riportate le classi acustiche di appartenenza di ogni recettore con relativi limiti di emissione e immissione.

ID Recettore	Classe acustica	Limiti di ir	mmissione	Limiti di e	emissione
ID Receitore	Classe deastica	D	N	D	N
R1	IV	65	55	60	50
R2	IV	65	55	60	50
R2-bis	R2-bis III		50	55	45
R3	IV	65	55	60	50
R4	IV	65	55	60	50
R5	III	60	50	55	45
R6	III	60	50	55	45
R7	R7 VI		70	65	65
R8	IV	65	55	60	50

Tabella 1: Classi acustiche di appartenenza

Fra i recettori individuati, tre sono in classe III (abitazioni ad est, canile e cimitero), quattro sono in classe IV (Alia S.A., Ilio pesca, l'azienda agricola in via del Castelluccio ed alcuni fabbricati civili a sud-ovest dello stabilimento) ed un altro è in classe VI (attività industriale a sud dello stabilimento).

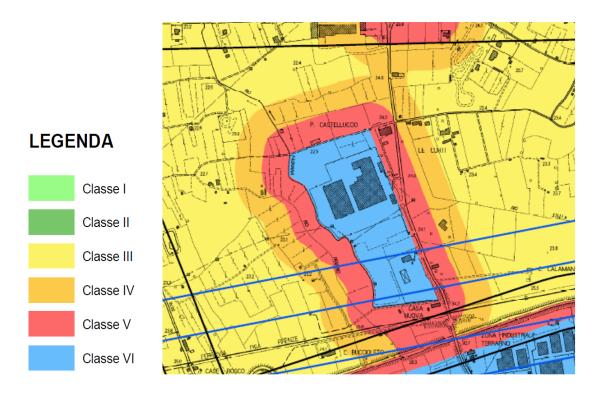


Figura 4: illustrazione della zonizzazione acustico del territorio

Di seguito una breve descrizione delle classi acustiche valutate nella presente relazione:

CLASSE III – Aree di tipo misto: rientrano in questa classe le aree urbane interessate da traffico veicolare locale o di attraversamento. Con media densità di popolazione, con presenza di attività commerciali, uffici, con limitata presenza di attività artigianali e assenza di attività industriali; aree rurali interessate da attività che impiegano macchine operatrici.

	diurno (06.00-22.00)	notturno (22.00-06.00)
valori limite di emissione - Leq in dB(A)	55	45
valori limite assoluti di immissione - Leq in dB (A)	60	50

CLASSE IV - aree di intensa attività umana: rientrano in questa classe le aree urbane interessate da intenso traffico veicolare, con alta densità di popolazione, con elevata presenza di attività commerciali e uffici, con presenza di attività artigianali; le aree in prossimità di strade di grande comunicazione e di linee ferroviarie; le aree portuali, le aree con limitata presenza di piccole industrie.

	diurno (06.00-22.00)	notturno (22.00-06.00)
valori limite di emissione - Leq in dB(A)	60	50
valori limite assoluti di immissione - Leq in dB (A)	65	55

CLASSE VI - aree esclusivamente industriali: rientrano in questa classe le aree esclusivamente interessate da attività industriali e prive di insediamenti abitativi.

	diurno (06.00-22.00)	notturno (22.00-06.00)
valori limite di emissione - Leq in dB(A)	65	65
valori limite assoluti di immissione - Leq in dB (A)	70	70

Per completezza si riporta in allegato la seguente documentazione:

Allegato 2: tabella riassuntiva dei valori limite di cui al D.P.C.M. 14 novembre 1997.

Allegato 3: estratto del piano di classificazione acustica del comune di Empoli con l'area di riferimento.

5 RISULTATI DELLA SIMULAZIONE

Lo scopo della presente valutazione previsionale è quello di verificare attraverso l'impiego del software di simulazione acustica CADNA-A l'impatto che gli interventi del progetto in esame avranno sul clima acustico del territorio.

Attraverso l'impiego di CADNA-A sono stati modellati gli effetti acustici prodotti dalla somma del funzionamento di tutti gli impianti previsti dal progetto in aggiunta a quelli attualmente presenti. Nello specifico è stata eseguita una simulazione acustica dello stato di fatto considerando le sorgenti sonore attualmente presenti nello stabilimento e una simulazione dello stato di progetto considerando le nuove sorgenti sonore che saranno installate. Lo studio previsionale di impatto acustico oggetto della presente valutazione prevede dunque il confronto dei risultati della simulazione dello stato di fatto con lo stato di progetto.

5.1 DESCRIZIONE DELLE SORGENTI SONORE

La modellazione acustica del software CADNA-A richiede la caratterizzazione delle sorgenti sonore tramite inserimento dei livelli di pressione sonora in bande d'ottava. A questo scopo sono stati inseriti i dati provenienti dalla valutazione di impatto acustico eseguita dalla Carat Servizi S.r.l effettuata a dicembre 2019 come previsto da aggiornamento triennale (prescrizione AIA), in aggiunta ad una sessione di rilievi fonometrici effettuati allo scopo di specificare le sorgenti sonore interne allo stabilimento.

Di seguito sono riportati i valori in bande d'ottava dei rilievi effettuati nelle due campagne di misura di riferimento. Nelle tabelle 2 e 3 si riportano i dati relativi alle misurazioni effettuate da Carat Servizi sia riferiti al periodo diurno che riferiti al periodo notturno. Nella tabella 4 si riportano i dati relativi alle misurazioni effettuati direttamente sulle sorgenti sonore.

Rif.	ID misura	LeqA	31,5Hz	63Hz	125Hz	250Hz	500Hz	1000Hz	2000Hz	4000Hz	8000Hz
	P1	63,3	57,4	58,1	54,2	56,4	55,2	54,7	48,3	42,3	30,3
	P2	53	61,5	54,3	46	44,2	42,8	45,6	40,3	34,2	28,5
Diurno	P3	66,5	64,8	64,6	60	57,2	57,6	57,3	55,8	49	40,3
Diurno	P3-bis	65,4	63,9	67,3	57,3	53,8	57,4	56,3	56,1	50	42,7
	P4	69,1	69,3	72,9	72,7	62,7	62,3	58,4	56,9	48,2	35,7
	P6	61,8	69,1	65,3	64,1	58,3	55,3	51,8	47,2	37,7	24,3

Tabella 2: Valori di pressione sonora in bande d'ottava per i rilievi diurni

Rif.	ID misura	LeqA	31,5Hz	63Hz	125Hz	250Hz	500Hz	1000Hz	2000Hz	4000Hz	8000Hz
	P1	61,9	57,2	58,1	52,9	55,7	55,1	53,6	46,1	40,6	21,5
	P2	55,2	67,6	54,1	51,4	46,7	47	45,7	41,9	39,3	33,3
Notturno	Р3	63,6	63	60,9	57,7	54,7	53,4	53,8	54,3	47,4	38,8
Notturno	P3-bis	65,4	62,5	66,8	56,9	53,9	57	55,1	56,7	50,1	43,2
	P4	49,7	60,2	52,1	45,3	41,7	40,3	39,9	39	30,7	24,9
	P6	50,9	55,8	58	42,9	42,5	45,5	41,3	35	20,1	11,1

Tabella 3: Valori di pressione sonora in bande d'ottava per i rilievi notturni

ID misura	LeqA	31,5Hz	63Hz	125Hz	250Hz	500Hz	1000Hz	2000Hz	4000Hz	8000Hz
M1	57,1	60,9	55	57,5	51,3	51,2	46,3	40,4	33,5	23,9
M2	88,1	82,3	84,2	80,3	80,3	79,1	78,9	75,4	72	65,3
M3	91,8	80,1	86,3	82,9	85,5	85,8	83	76,7	75,4	65,7
M4	85,8	78,6	85	74,1	78,3	77,6	70,1	72,3	75,3	64,4
M5	76,4	66,4	70,8	66,8	71,5	68,4	64,9	63,1	64,1	63,1
M6	79,1	73,9	70,1	64,4	62,2	62	60,7	64,9	69,7	68,5
M7	90,5	69,8	67,4	65,8	74,1	77,3	78	87,9	74,1	62
M8	93,6	82	80,3	78,7	75,9	74,2	72,6	90,8	84,3	72,1
M9	96,1	81,4	76,2	75,7	75,1	73,2	76,6	94,7	79,3	66,7
M10	86,5	79	79,4	86	78,4	76,7	73,2	82	75,3	61,9
M11	64,2	62,6	63,4	61,4	57,5	56,9	53,4	56,8	49,7	35,3
M12	73,4	63,9	65,8	64,5	57,3	66,1	59,7	63,7	62,6	58
M13	62,6	55,8	50,6	53,5	49,5	50,1	51,1	49,9	53,9	42,7
M14	58,1	63,1	57,7	56,8	48,8	47,1	47,9	47,4	41,4	34,7

Tabella 4: Valori di pressione sonora in bande d'ottava per i rilievi sulle sorgenti di rumore

Come richiesto dal programma di monitoraggio AIA, i punti di misura ricavati dalla valutazione di impatto acustico 2019 sono situati lungo il perimetro aziendale. Questo perché lo scopo di una valutazione di questa tipologia è quello di valutare le emissioni sonore dello stabilimento. Come evidenziato in **Figura 5**, i rilievi effettuati per caratterizzare le sorgenti sonore sono stati effettuati all'interno dello stabilimento, in corrispondenza delle fonti di rumore maggiore.

Nello specifico le misurazioni effettuate corrispondono alle seguenti sorgenti sonore:

- Magazzini e passaggio mezzi: P1, P4, P6, M1, M14
- Compressori/torri evaporative Forno 22: M2, M3, M4
- Filtro elettrostatico: P2, M6
- Carico materie prime: M7
- Compressori/torri evaporative Forno 21: P3bis, M8, M9; M10
- Cabina del metano: P3, M12, M11
- Officina: M13

Le varie sorgenti sonore sono state modellizzate come sorgenti piane verticali.

Figura 5: Postazione dei punti di misurazione

5.2 STIMA DEI LIVELLI DI PROPAGAZIONE ACUSTICA – STATO DI FATTO

Sulla base delle misurazioni effettuate e dalla caratterizzazione ambientale del sito da esaminare, si è provveduto ad elaborare le mappe di diffusione acustiche a linee di isolivello.

Le mappe riportano sia la situazione di esposizione relativa al periodo diurno, sia la situazione relativa al periodo notturno. Nonostante i forni fusori, ovvero le maggiori fonti di rumore, debbano necessariamente lavorare a ciclo continuo 24 ore su 24, 365 giorni l'anno, è stato deciso di effettuare la distinzione tra diurno e notturno sulla base dell'evidenza che oltre ai forni furori esistono altre sorgenti di rumore di minor entità che cessano di funzionare (parzialmente) durante il periodo notturno. Ci riferiamo nello specifico ai lavori di logistica nei magazzini, e dato che nello stato di progetto si considera la costruzione di due nuovi magazzini la distinzione diurno/notturno si è resa necessaria.

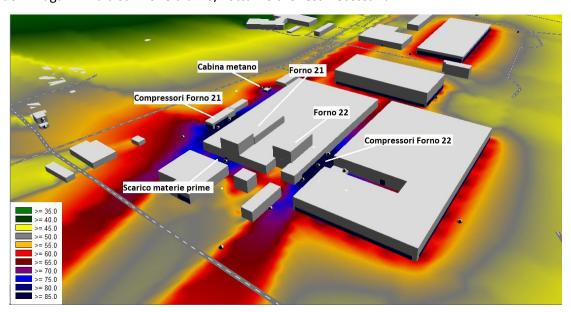


Figura 6: Rappresentazione 3D del modello acustico elaborato - Stato di fatto

Il software è configurato sullo standard della norma UNI ISO 9613-2:2006 per la simulazione delle sorgenti di rumore facenti parte dello stabilimento. In particolare, considerata la distanza dai recettori e le misurazioni effettuate in prossimità delle sorgenti stesse, le fonti di rumore sono state modellizzate come sorgenti areali verticali (compressori, torri evaporative, cabina metano, bandoni, porte, portoni).

Nella rappresentazione dello stato di fatto si è considerata la condizione più gravosa dal punto di vista acustico, ovvero la contemporanea attività delle sorgenti sonore fisse oltre che alla presenza continua di attività di logistica all'interno ed esterno di tutte le strutture adibite a magazzino, specialmente nella condizione diurna.

Attraverso la mappa sviluppata da CADNA-A, illustrata in **Figura 7**, possiamo visualizzare graficamente il clima acustico generato dallo stabilimento allo stato di fatto nella sua condizione più gravosa, ovvero nella contemporanea attività di tutte le sorgenti rumorose.

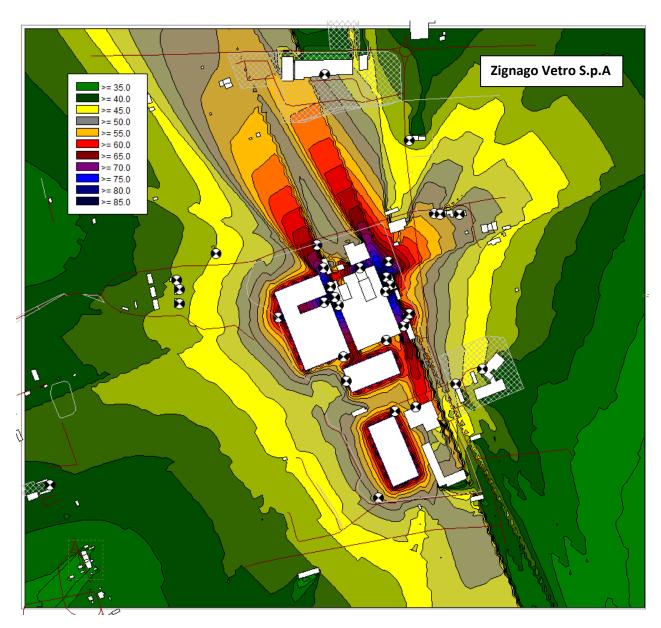


Figura 7: Modellazione sonora riferita allo stato di fatto durante il periodo di riferimento diurno

Come possiamo notare le due fonti di rumore maggiore riguardano i locali compressori adibiti alla ventilazione dei Forni 21 e 22. Queste creano delle zone di propagazione del suono in direzione nord e sud, ed in misura minore anche verso est.

Come già anticipato il modello è stato testato anche in condizioni di operatività meno gravose per quanto riguarda il periodo di riferimento notturno. Questo perché nonostante i Forni fusori 21 e 22 vengano tenuti perennemente in funzione, le attività di logistica registrano un calo di attività nelle ore notturne, come anche lo scarico delle materie prime da parte dei fornitori esterni.

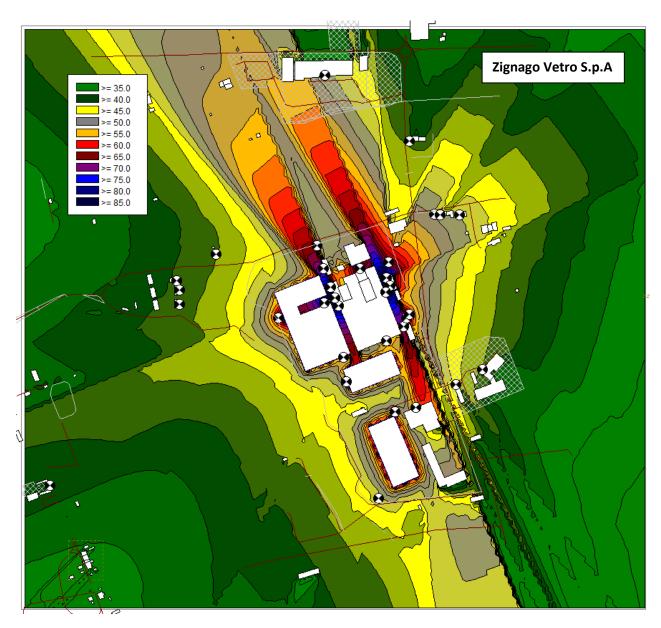


Figura 8: Modellazione sonora riferita allo stato di fatto durante il periodo di riferimento notturno

La bontà del modello utilizzato è data dal confronto del livello di pressione sonora misurato tramite i rilievi fonometrici ed i livelli calcolati dal software CADNA-A in corrispondenza degli stessi punti di misura. Dall'analisi effettuata possiamo notare come la differenza tra le misure effettuate ed i valori riportati dal modello discostino solo per poche decine di unità di Decibel. Fanno eccezione le misure P4, P6 e M7.

Per quanto concerne le misure P4 e P6 le misurazioni sul campo subiscono le influenze del rumore proveniente dall'azienda limitrofa (Mazzoni Ferro S.r.l.) e dalla vicina strada a scorrimento veloce.

La misura M7 durante il rilievo ha subito l'influenza di tre camion-silo che contemporaneamente rilasciavano la materia prima trasportata davanti alla zona "miscelazione". Una situazione del genere non è costante ma avviene solo sporadicamente e solo durante il periodo di riferimento diurno.

Nella successiva tabella sono riportati i risultati del confronto tra misure effettuate sul campo e valori di output di CADNA-A:

		utput		eqA		
ID Misura	Diurno	DNA-A Notturno	m Diurno	isure Notturno	Δ	Δ
	(dBA)	(dBA)	(dBA)	(dBA)	Diurno	Notturno
M1	57.4	56.8	57.1	57.1	0,3	-0,3
M2	87.9	87.9	88.1	88.1	-0,2	-0,2
M3	92.3	92.3	91.8	91.8	0,5	0,5
M4	86.2	86.2	85.4	85.4	0,8	0,8
M5	76.3	76.3	76.4	76.4	-0,1	-0,1
M6	79.3	79.3	79.1	79.1	0,2	0,2
M7	84.0	76.0	90.5	90.5	-6,5	-14,5
M8	93.9	93.9	93.6	93.6	0,3	0,3
M9	96.3	96.3	96.1	96.1 0,2		0,2
M10	86.8	86.8	86.5	86.5	0,3	0,3
M11	64.8	64.6	64.2	64.2	0,6	0,4
M12	74.3	71.3	73.4	73.4	0,9	-2,1
M13	62.9	62.7	62.6	62.6	0,3	0,1
M14	58.2	58.2	58.1	58.1	0,1	0,1
P1	63,9	61,2	63,3	61,9	0,6	-0,7
P2	53.9	53.6	53	55.2	0,9	-1,6
Р3	66.6	63.8	66.5	63.6	0,1	0,2
P3bis	65.7	63.8	65.4	65.4	0,3	-1,6
P4	56.4	51.6	69.1	49.7	-12,7	1,9
Р6	48.3	44.6	61.8	50.9	-13,5	-6,3

Tabella 5: Confronto tra la pressione sonora misurata e pressione sonora simulata.

Per quanto riguarda la valutazione di immissione acustica sui recettori sono stati valutati i due recettori geograficamente più vicini all'area di interesse per la costruzione dei nuovi magazzini:

	Classe	Li	imite	L	.eqA	Rispetto		
Nome	Classe acustica	Diurno Notturno		Diurno	Notturno	dei limiti		
	acustica	(dBA)	(dBA)	(dBA) (dBA)		Diurno	Notturno	
R5 Canile	III	60.0	50.0	53,5	47,5	Si	Si	
R8 abitazioni	IV	65.0	55.0	52,5	47,2	Si	Si	

Tabella 6: Livelli di rumore misurati ai Recettori più prossimi

Di seguito si riportano i valori calcolati con il software di simulazione a confronto con i limiti di emissione acustica:

Nome	Classe	Lim	nite	LeqA		Rispetto	
	acustica	Diurno	Notturno	Diurno	Notturno	dei l	imiti
	acastica	(dBA)	(dBA)	(dBA)	(dBA)	Diurno	Notturno
R1 "Alia S.A." piano terra	III	55	45	42.0	40.1	Si	Si
R1 "Alia S.A." 1° piano	IV	60	50	43.3	40.8	Si	Si
R1 "Alia S.A." prima palazzina	IV	60	50	43.5	41.0	Si	Si
R2 annesso	IV	60	50	50.9	47.9	Si	Si
R2 1° piano	IV	60	50	50.4	47.7	Si	Si
R2 2° piano	IV	60	50	52.3	49.4	Si	Si
R2-bis	Ш	55	45	46.8	44.5	Si	Si
R3 1° piano	IV	60	50	43.7	41.8	Si	Si
R3 2° piano	IV	60	50	45.5	44.1	Si	Si
R4 "Ilio pesca"	IV	60	50	49,4	49,1	Si	Si
R5 Capanno	Ш	55	45	42.8	40.9	Si	Si
R5 Canile 1	Ш	55	45	42.2	40.3	Si	Si
R5 Canile 3	III	55	45	41.6	39.6	Si	Si
R5 Canile 2	III	55	45	42.0	39.8	Si	Si
R6 Cimitero	III	55	45	38.4	38.1	Si	Si
R7 "Mazzoni Ferro"	VI	65	65	53.9	53.5	Si	Si
R8 abitazioni	IV	60	50	41.6	40.5	Si	Si

Tabella 7: Risultato della simulazione acustica sui Recettori individuati

Calcolo del "Livello di Rumore Residuo" e "Livello Differenziale di Rumore".

Nelle precedenti tabelle sono presenti i dati necessari al calcolo sia del livello di rumore residuo che del livello differenziale di rumore.

Si presume che il livello di rumore ambientale (L_{Aeq}) sia determinato come somma del rumore del rumore residuo (L_R) e del rumore emesso dalle sorgenti disturbanti (L_E) e pertanto sia:

$$L_{Aeq} = L_R + L_E$$

Considerando che il livello di rumore ambientale (L_{Aeq}) è stato misurato sul campo ed il rumore emesso da Zignago Vetro (L_E) viene calcolato dal programma CADNA-A. Questo metodo risulta efficace specialmente nei casi in cui il rumore residuo non è omogeneo in tutto il territorio limitrofo all'azienda. Dato che i livelli sonori sono espressi in Decibel non è possibile usare una semplice differenza aritmetica per ricavare il livello del rumore residuo con la formula inversa, ma deve essere eseguita una sottrazione logaritmica:

$$L_R = 10*Log_{10} (10^{Laeq/10} - 10^{Le/10})$$

Il calcolo del livello differenziale di rumore verrà così ricavato dalla differenza tra rumore ambientale (L_{Aeq}) e rumore residuo (L_R).

Recettore	LAeq	LE	LR	Differenziale
R5 Canile	53,5	42,2	53,2	0,3
R8 abitazioni	52,5	41,6	52,1	0,4

Tabella 8: Verifica del valore differenziale diurno

Recettore	LAeq	LE	LR	Differenziale
R5 Canile	47,5	40,9	46,4	1,1
R8 abitazioni	47,2	40,5	46,2	1,0

Tabella 9: Verifica del valore differenziale notturno

5.3 STIMA DEI LIVELLI DI PROPAGAZIONE ACUSTICA – STATO DI PROGETTO

Come nella configurazione stato di fatto, anche nella rappresentazione dello stato di progetto sono state considerale le condizioni più gravose dal punto di vista acustico nella versione "diurno", ovvero con i due Forni 21 e 22 in attività e tutti i magazzini a pieno regime. Nella versione "notturna" invece le sorgenti derivate dalle attività di logistica e scarico materie prime sono state attenuate come dimostrato dalle campagne di misurazione notturna effettuate durante i monitoraggi.

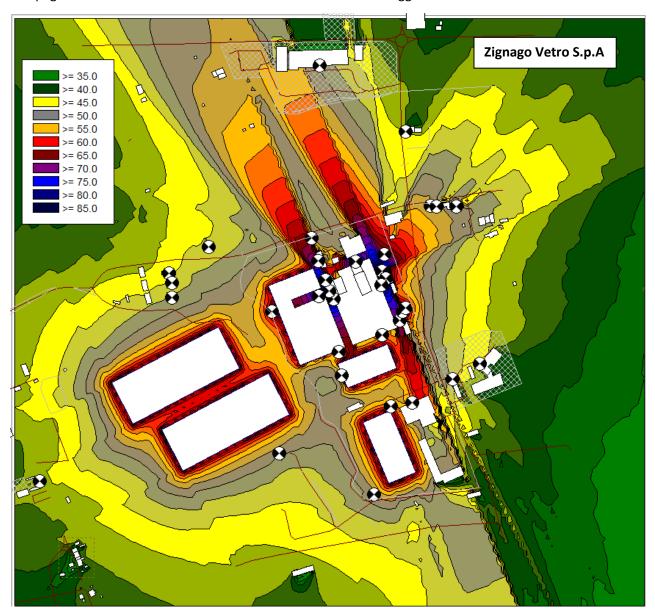


Figura 9: Modellazione sonora riferita allo stato di progetto durante il periodo di riferimento diurno

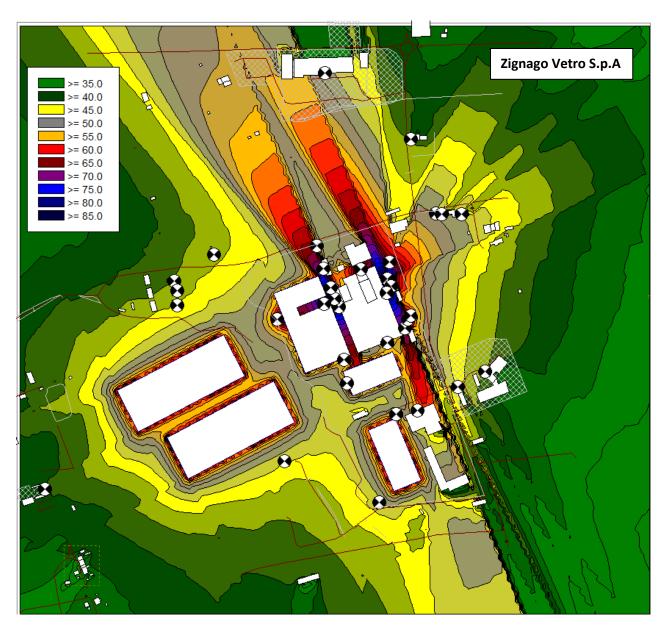


Figura 10: Modellazione sonora riferita allo stato di progetto durante il periodo di riferimento notturno

Il clima acustico dello stabilimento derivato dalle nuove sorgenti installate sarà, come si nota graficamente dalle precedenti **Figura 9 e Figura 10**, di entità maggiore rispetto allo stato di fatto odierno.

Nello specifico i nuovi magazzini comporteranno come prevedibile una propagazione sonora in direzione Ovest ed in direzione Sud-Ovest.

La porzione di mappa a Nord dello stabilimento della Zignago Vetro non è particolarmente influenzata dalle nuove installazioni.

Nella prossima Tabella sono riportati i risultati di output del modello di simulazione per quanto riguarda il livello di pressione sonora (dBA) sui recettori individuati.

I recettori R1, R2, R3, R4situati ad Est e a Nord rispetto allo stabilimento di Zignago Vetro, subiscono un leggerissimo incremento dei valori di immissione, inferiore a 1 dB, sia nel periodo di riferimento diurno sia nel periodo nel periodo di riferimento notturno.

Anche per i recettori R6 e R7 la variazione dei valori di immissione è poco rilevante.

Il gruppo di recettori R5, ovvero l'insieme dei locali del "Canile Municipale di Empoli" subisce un incremento di 2-3 dB nel periodo diurno e circa 1-2 dB nel periodo notturno. Il recettore R8 abitazioni subisce invece un incremento di 5,5 dB nel periodo diurno e di 3,1 dB nel periodo notturno. È questo l'insieme di recettori a subire maggiormente l'impatto acustico delle nuove costruzioni della Zignago Vetro.

Nome Class		Stato (di fatto	Stato di progetto		Differenza di pressione sui recettori (dBA)	
	acustica	Diurno	Notturno	Diurno	Notturno	Diurno	Notturno
		(dBA)	(dBA)	(dBA)	(dBA)		
R1 "Alia S.A." piano terra	III	42,0	40,1	42,3	40,3	0,3	0,2
R1 "Alia S.A." 1° piano	IV	43,3	40,8	43,7	41,1	0,4	0,3
R1 "Alia S.A." prima palazzina	IV	43,5	41,0	43,9	41,3	0,4	0,3
R2 annesso	IV	50,9	48,1	50,9	48,1	0,0	0,0
R2 1° piano	IV	50,4	47,7	50,4	47,7	0,0	0,0
R2 2° piano	IV	52,3	49,4	52,3	49,4	0,0	0,0
R2-bis	III	46,8	44,5	46,9	44,6	0,1	0,1
R3 1° piano	IV	43,7	41,8	44,0	41,9	0,3	0,1
R3 2° piano	IV	45,5	44,1	45,7	44,2	0,2	0,1
R4 "Ilio pesca"	IV	49,4	49,1	49,5	49,1	0,1	0,0
R5 Capanno	III	42,8	40,9	45,1	42,2	2,3	1,3
R5 Canile 1	III	42,2	40,3	45,7	42,3	3,5	2
R5 Canile 3	III	41,6	39,6	43,5	40,6	1,9	1
R5 Canile 2	III	42,0	39,8	44,5	41,3	2,5	1,5
R6 Cimitero	III	38,4	38,1	39,7	37,1	1,3	-1
R7 "Mazzoni Ferro"	VI	53,9	53,5	54	53,5	0,1	0,0
R8 Abitazioni	IV	41,6	40,5	47,1	43,6	5,5	3,1

Tabella 10: Confronto dei livelli di pressione sonora ai recettori

Di seguito si riportano i valori calcolati con il software di simulazione a confronto con i limiti di emissione acustica:

	Classe	Lim	nite	Le	qΑ	Rispetto d	ei limiti di
Nome	acustica	Diurno	Notturno	Diurno	Notturno	emiss	sione
	acustica	(dBA)	(dBA)	(dBA)	(dBA)	Diurno	Notturno
R1 "Alia S.A." piano terra	III	55	45	42,3	40,3	Si	Si
R1 "Alia S.A." 1° piano	IV	60	50	43,7	41,1	Si	Si
R1 "Alia S.A." prima palazzina	IV	60	50	43,9	41,3	Si	Si
R2 annesso	IV	60	50	50,9	48,1	Si	Si
R2 1° piano	IV	60	50	50,4	47,7	Si	Si
R2 2° piano	IV	60	50	52,3	49,4	Si	Si
R2-bis	Ш	55	45	46,9	44,6	Si	Si
R3 1° piano	IV	60	50	44	41,9	Si	Si
R3 2° piano	IV	60	50	45,7	44,2	Si	Si
R4 "Ilio pesca"	IV	60	50	49,5	49,1	Si	Si
R5 Capanno	III	55	45	45,1	42,2	Si	Si
R5 Canile 1	Ш	55	45	45,7	42,3	Si	Si
R5 Canile 3	Ш	55	45	43,5	40,6	Si	Si
R5 Canile 2	Ш	55	45	44,5	41,3	Si	Si
R6 Cimitero	III	55	45	39,7	37,1	Si	Si
R7 "Mazzoni Ferro"	VI	65	65	54	53,5	Si	Si
R8 Abitazioni	IV	60	50	47,1	43,6	Si	Si

Tabella 11: Risultato della simulazione acustica sui Recettori individuati

Per il calcolo dei limiti di immissione si presume che il livello di rumore ambientale (L_{Aeq}) sia determinato come somma del rumore del rumore residuo (L_R) e del rumore emesso dalle sorgenti disturbanti (L_E) e pertanto sia:

$$L_{Aeq} = L_R + L_E$$

Il rumore residuo (L_R). è stato precedentemente calcolato per ogni recettore nelle **tabelle 8 e 9** mentre il rumore prodotto dalle sorgenti di Zignago Vetro (L_E) è rappresentato dall'output del software CadnaA.

Dato che i livelli sonori sono espressi in Decibel non è possibile usare una semplice somma aritmetica per ricavare il livello di rumore ambientale, ma deve essere eseguita una somma logaritmica:

$$L_{Aeq} = 10*Log_{10} (10^{Laeq/10} + 10^{Le/10})$$

		ı	.E	L	.R	LA	Aeq
Nome	Classe acustica	Diurno	Notturno	Diurno	Notturno	Diurno	Notturno
	acustica	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
R5 Canile	III	45,7	42,3	53,2	46,4	53,9	47,8
R8 abitazioni	IV	47,1	43,6	52,1	46,2	53,3	48,1

Tabella 12: Calcolo dei valori di immissione

	Classe	Lim	Limite		LAeq		petto
Nome	acustica	Diurno	Notturno	Diurno	Notturno	de	i limiti
	acustica	(dBA)	(dBA)	(dBA)	(dBA)	Diurno	Notturno
R5 Canile	III	60.0	50.0	53,9	47,8	Si	Si
R8 abitazioni	IV	65.0	55.0	53,3	48,1	Si	Si

Tabella 13: Verifica dei limiti di immissione

Il calcolo del livello differenziale di rumore verrà così ricavato dalla differenza tra rumore ambientale (L_{Aeq}) e rumore residuo (L_R).

Recettore	LAeq	LE	LR	Differenziale
R5 Canile	53,9	45,7	53,2	0,7
R8 abitazioni	53,3	47,1	52,1	1,2

Tabella 14: Verifica del valore differenziale diurno

Recettore	LAeq	LE	LR	Differenziale
R5 Canile	47,8	42,3	46,4	1,4
R8 abitazioni	48,1	43,6	46,2	1,9

Tabella 15: Verifica del valore differenziale notturno

6 CONCLUSIONI

Valutazione previsionale delle modifiche previste dal progetto di costruzione di due nuovi magazzini.

In base alle simulazioni modellistiche sviluppate tramite software CADNA-A ed alla valutazione effettuata è possibile affermare che, a seguito della realizzazione dei nuovi magazzini, l'incremento di rumore generato dalle nuove costruzioni di progetto è da considerarsi non rilevante rispetto all'attuale situazione emissiva.

Ciò nonostante, essendo prevista una modifica della destinazione d'uso dell'area da agricola ad industriale ai sensi del PUA del comune di Empoli dovuta alla realizzazione dei nuovi magazzini, si auspica altresì un aggiornamento anche del PCCA e della relativa zonizzazione in modo da far ricadere i magazzini in classe VI (aree esclusivamente industriali) coerentemente con il resto dello stabilimento.

In ogni caso la società committente è disponibile, qualora richiesto dall'autorità competente, ad eseguire ulteriori rilievi a seguito della costruzione dei nuovi magazzini al fine di verificare strumentalmente la presente valutazione previsionale.

Pisa, 23 aprile 2025

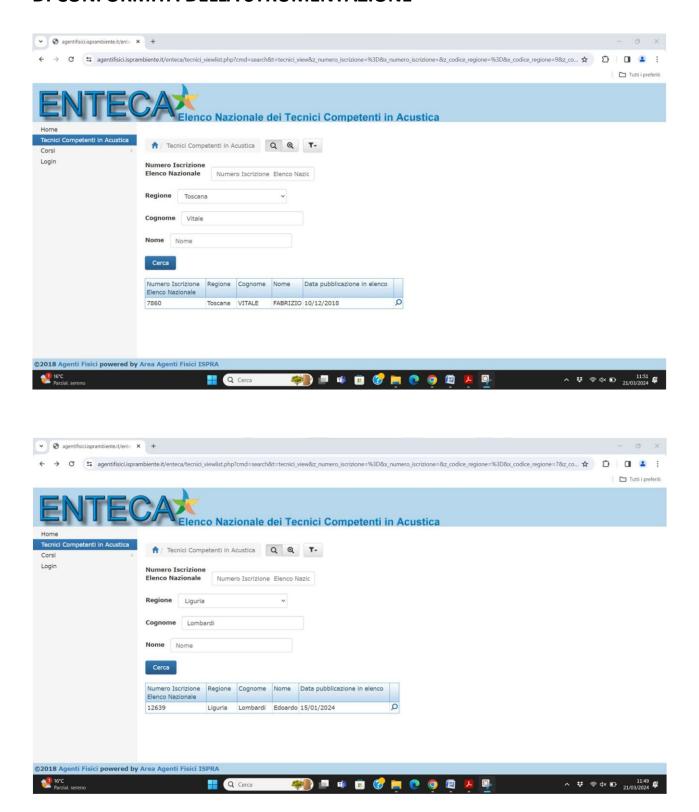
l Tecnico Competente

Dott. Ing. Sporizio VITALE ORDINE DIGEONERI PROV. LIVORNO

N. 1413

Ing. Fabrizio Vitale

ivile - Ambientale Ing. Industriale g. dell'Informazione



ALLEGATI

ALLEGATO 1: ATTESTAZIONE DEI TECNICI COMPETENTI E CERTIFICATO DI CONFORMITÀ DELLA STRUMENTAZIONE

Isoambiente S.r.I.
Unità Operativa Principale di Termoli (CB)
Via India, 36/a – 86039 Termoli (CB)
Tel.8 Fax +39 0875 702542
Web : www.isoambiente.com
e-mail: indio@isoambiente.com

- data di emissione

Centro di Taratura LAT Nº 146 Calibration Centre Laboratorio Accreditato di Taratura

Pagina 1 di 3 Page 1 of 3

CERTIFICATO DI TARATURA LAT 146 13350 Certificate of Calibration

date of issue - cliente customer - destinatario receiver - richlesta application - in data date	Studio Vitale ing. Fabrizio Via Grande, 204 - 57123 Livorno (LI) Studio Vitale ing. Fabrizio T410/21 2021/07/06
Si riferisce a referring to - oggetto item - costruttore	Calibratore
manufacturer	01 dB
- modello model	CAL 21
 matricola serial number 	34634259
 data di ricevimento oggetto date of receipt of item 	2021/07/07
 data delle misure date of measurements 	2021/07/08
- registro di laboratorio laboratory reference	21-0920-RLA

2021/07/08

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 146 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT).

ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compilance with the accreditation LAT N° 146 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System.

ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i campioni di prima linea da cui inizia la catena di riferibilità del Centro e i rispettivi certificati di taratura, in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards are indicated as well, from which starts the traceability chain of the laboratory, and the related calibration certificates in their course of validity. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente al documento EA-4/02 e sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to EA-4/02. They were estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Il Responsabile del Centro Head of the Centre

Isoambiente S.r.I.
Unità Operativa Principale di Termoli (CB)
Via India, 36/a – 86039 Termoli (CB)
Tel.8. Fax +39 0875 702542
Web : www.isoambiente.com
e-mail: info@isoambiente.com

Centro di Taratura LAT N° 146 Calibration Centre Laboratorio Accreditato di Taratura

Pagina 1 di 8 Page 1 of 8

CERTIFICATO DI TARATURA LAT 146 13349 Certificate of Calibration

- data di emissione date of issue	2021/07/08	II ir
- cliente customer	Studio Vitale ing. Fabrizio Via Grande, 204 - 57123 Livorno (LI)	ri Ie
 destinatario receiver 	Studio Vitale ing. Fabrizio	A A
- richiesta application	T410/21	d
- in data date	2021/07/06	a u
Si riferisce a referring to		d C ir
- oggetto item	Fonometro	a
- costruttore manufacturer	01 dB	C
 modello model 	Solo	9 It ti
- matricola serial number	11514	A n
- data di ricevimento oggetto date of receipt of item	2021/07/07	c c ir
- data delle misure date of measurements	2021/07/08	: : :
 registro di laboratorio laboratory reference 	21-0919-RLA	e is

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 146 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT).

ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 146 granted according to decrees connected with Italian Iaw No. 273/1991 which has established the National Calibration System.

ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure citate alla pagina seguente, dove sono specificati anche i campioni di prima linea da cui inizia la catena di riferibilità del Centro e i rispettivi certificati di taratura, in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the procedures given in the following page, where the reference standards are indicated as well, from which starts the traceability chain of the laboratory, and the related calibration certificates in their course of validity. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente al documento EA-4/02 e sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad livello di fiducia di circa il 95%. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to EA-4/02. They were estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Il Responsabile del Centro Head of the Centre

ALLEGATO 2: VALORI LIMITE D.P.C.M. 14/11/1997

TABELLA A: CLASSIFICAZIONE DEL TERRITORIO COMUNALE (ART.1)

CLASSE I - aree particolarmente protette: rientrano in questa classe le aree nelle quali la quiete rappresenta un elemento di base per la loro utilizzazione: aree ospedaliere, scolastiche, aree destinate al riposo ed allo svago, aree residenziali rurali, aree di particolare interesse urbanistico, parchi pubblici, ecc.

CLASSE II - aree destinate ad uso prevalentemente residenziale: rientrano in questa classe le aree urbane interessate prevalentemente da traffico veicolare locale, con bassa densità di popolazione, con limitata presenza di attività commerciali ed assenza di attività industriali e artigianali

CLASSE III - aree di tipo misto: rientrano in questa classe le aree urbane interessate da traffico veicolare locale o di attraversamento, con media densità di popolazione, con presenza di attività commerciali, uffici con limitata presenza di attività artigianali e con assenza di attività industriali; aree rurali interessate da attività che impiegano macchine operatrici

CLASSE IV - aree di intensa attività umana: rientrano in questa classe le aree urbane interessate da intenso traffico veicolare, con alta densità di popolazione, con elevata presenza di attività commerciali e uffici, con presenza di attività artigianali; le aree in prossimità di strade di grande comunicazione e di linee ferroviarie; le aree portuali, le aree con limitata presenza di piccole industrie.

CLASSE V - aree prevalentemente industriali: rientrano in questa classe le aree interessate da insediamenti industriali e con scarsità di abitazioni.

CLASSE VI - aree esclusivamente industriali: rientrano in questa classe le aree esclusivamente interessate da attività industriali e prive di insediamenti abitativi

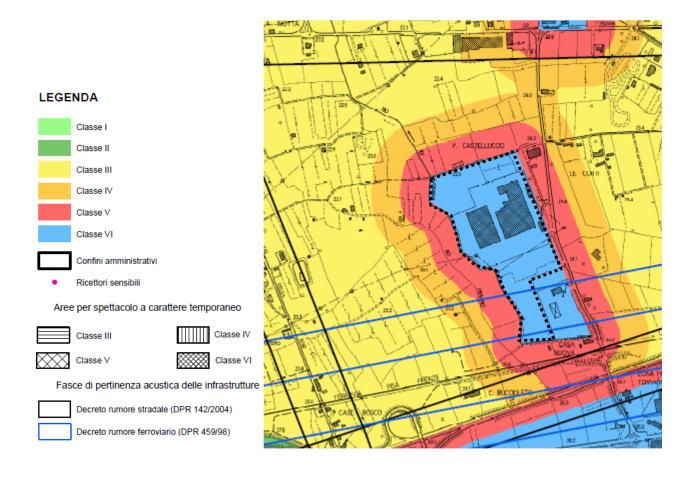
TABELLA B: VALORI LIMITE DI EMISSIONE - LEQ IN DB(A) (ART. 2)

classi di destinazione d'uso del territorio	tempi di riferimento					
	diurno (06.00-22.00)	notturno (22.00-06.00)				
I aree particolarmente protette	45	35				
II aree prevalentemente residenziali	50	40				
III aree di tipo misto	55	45				
IV aree di intensa attività umana	60	50				
V aree prevalentemente industriali	65	55				
VI aree esclusivamente industriali	65	65				

TABELLA C: VALORI LIMITE ASSOLUTI DI IMMISSIONE - LEQ IN DB (A) (ART.3)

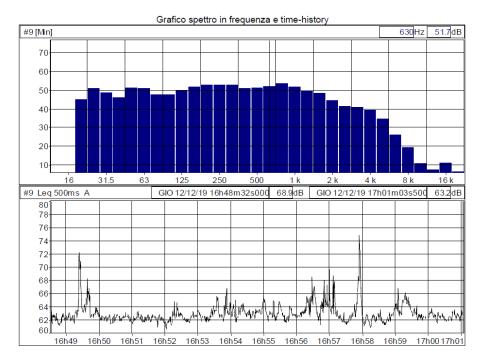
classi di destinazione d'uso del territorio	tempi di riferimento					
	diurno (06.00-22.00)	notturno (22.00-06.00)				
I aree particolarmente protette	50	40				
II aree prevalentemente residenziali	55	45				
III aree di tipo misto	60	50				
IV aree di intensa attività umana	65	55				
V aree prevalentemente industriali	70	60				
VI aree esclusivamente industriali	70	70				

TABELLA D: VALORI DI QUALITÀ - LEQ IN DB (A) (ART.7)


classi di destinazione d'uso del territorio	tempi di riferimento					
	diurno (06.00-22.00)	notturno (22.00-06.00)				
I aree particolarmente protette	47	37				
II aree prevalentemente residenziali	52	42				
III aree di tipo misto	57	47				
IV aree di intensa attività umana	62	52				
V aree prevalentemente industriali	67	57				
VI aree esclusivamente industriali	70	70				

ALLEGATO 3: ZONIZZAZIONE ACUSTICA DEL SITO DI RIFERIMENTO

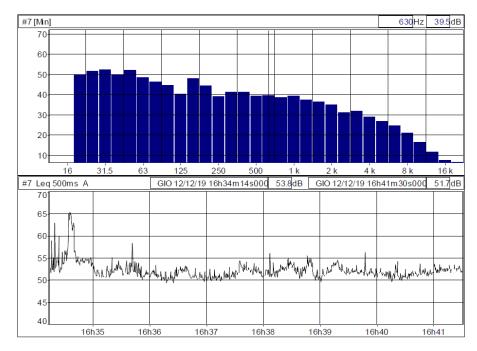
Tratteggiato al centro dell'immagine sono distinguibili i confini dello stabilimento


ALLEGATO 4: MISURE

Misura P1 diurno:

File	per_009								
Inizio	12/12/19 16.48.32.000								
Fine	12/12/19 17.01.04.000								
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#9	Leq	Α	dB	63,3	60,6	74,8	61,5	61,7	62,5
#9	Slow Max	Α	dB		61,2	73,3	61,7	61,9	62,6
#9	Fast Max	Α	dB		61,2	76,7	61,9	62,1	62,9
#9	Impuls Max	Α	dB		61,8	77,8	62,6	62,8	63,7
#9	1/3 Ott 20Hz	Lin	dB	57,6	44,6	76,3	51,5	52,7	56,5
#9	1/3 Ott 25Hz	Lin	dB	60,5	50,7	73,1	55,3	56,4	59,7
#9	1/3 Ott 31.5Hz	Lin	dB	57,4	48,5	65,6	53,1	53,8	56,8
#9	1/3 Ott 40Hz	Lin	dB	56,0	45,7	71,1	51,4	52,2	54,8
#9	1/3 Ott 50Hz	Lin	dB	58,8	51,0	68,9	54,7	55,4	58,3
#9	1/3 Ott 63Hz	Lin	dB	58,1	50,9	70,5	54,1	54,8	57,2
#9	1/3 Ott 80Hz	Lin	dB	55,0	47,3	66,5	51,6	52,3	54,4
#9	1/3 Ott 100Hz	Lin	dB	53,3	47,4	61,4	50,1	50,6	52,7
#9	1/3 Ott 125Hz	Lin	dB	54,2	49,4	63,2	51,7	52,1	53,8
#9	1/3 Ott 160Hz	Lin	dB	55,9	51,4	64,2	53,1	53,6	55,3
#9	1/3 Ott 200Hz	Lin	dB	56,6	52,5	65,3	54,0	54,4	56,0
#9	1/3 Ott 250Hz	Lin	dB	56,4	52,3	65,9	54,2	54,5	55,9
#9	1/3 Ott 315Hz	Lin	dB	56,7	52,4	68,3	54,1	54,5	55,8
#9	1/3 Ott 400Hz	Lin	dB	55,4	50,7	69,7	52,6	52,9	54,1
#9	1/3 Ott 500Hz	Lin	dB	55,2	51,0	65,6	53,0	53,3	54,5
#9	1/3 Ott 630Hz	Lin	dB	55,5	51,7	64,3	53,5	53,8	54,9
#9	1/3 Ott 800Hz	Lin	dB	56,8	53,5	62,2	54,9	55,2	56,5
#9	1/3 Ott 1kHz	Lin	dB	54,7	51,5	62,0	52,9	53,2	54,4
#9	1/3 Ott 1.25kHz	Lin	dB	52,0	49,1	60,0	50,4	50,7	51,6
#9	1/3 Ott 1.6kHz	Lin	dB	51,3	48,2	61,3	49,6	49,9	50,8
#9	1/3 Ott 2kHz	Lin	dB	48,3	44,4	62,0	45,7	45,9	47,0
#9	1/3 Ott 2.5kHz	Lin	dB	50,8	41,1	72,1	42,2	42,6	44,5
#9	1/3 Ott 3.15kHz	Lin	dB	47,7	40,8	65,5	41,7	42,0	43,7
#9	1/3 Ott 4kHz	Lin	dB	42,3	38,9	54,0	39,8	40,0	41,1
#9	1/3 Ott 5kHz	Lin	dB	38,1	34,2	51,6	34,9	35,2	36,3
#9	1/3 Ott 6.3kHz	Lin	dB	34,4	26,0	52,9	27,0	27,2	29,0
#9	1/3 Ott 8kHz	Lin	dB	30,3	19,4	48,8	20,7	21,0	23,5
#9	1/3 Ott 10kHz	Lin	dB	26,3	10,4	47,2	11,1	11,5	15,4
#9	1/3 Ott 12.5kHz	Lin	dB	23,8	7,2	45,5	7,6	7,8	10,5
#9	1/3 Ott 16kHz	Lin	dB	22,9	10,8	43,9	14,5	15,2	18,2
#9	1/3 Ott 20kHz	Lin	dB	16,9	6,1	42,8	6,2	6,3	6,7

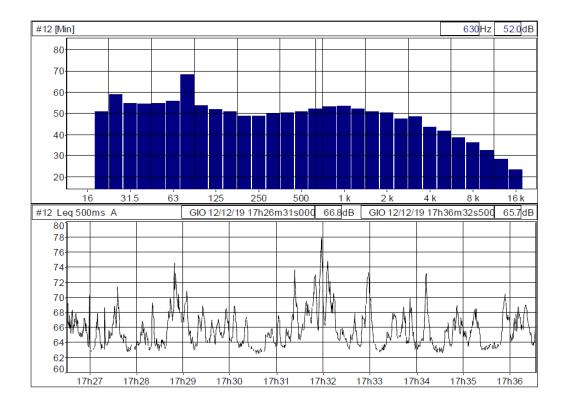
Decreto 16 marzo 1998						
File	per_009					
Ubicazione	#9					
Sorgente	amb					
Tipo dati	Leq					
Pesatura	A					
Inizio	12/12/19 16.48.32.000					
Fine	12/12/19 17.01.04.000					
Tempo di riferimento	Diurno (tra le h 6:00 e le h 22:00)					
Componenti impulsive						
Conteggio impulsi	0					
Frequenza di ripetizione	0,0 impulsi / ora					
Ripetitività autorizzata	10					
Fattore correttivo KI	0,0 dBA					
Componenti tonali						
Fattore correttivo KT	0,0 dBA					
Componenti bassa frequenza						
Fattore correttivo KB	0,0 dBA					
Presenza di rumore a tempo parziale						
Fattore correttivo KP	0,0 dBA					
Livelli						
Rumore ambientale misurato LM	63,3 dBA					
Rumore ambientale LA = LM + KP	63,3 dBA					
Rumore residuo LR						
Differenziale LD = LA - LR						
Rumore corretto LC = LA + KI + KT + KB	63,3 dBA					



Misura P2 diurno:

File	per_007								
Inizio	12/12/19 16.34.1	4.000							
Fine	12/12/19 16.41.3	0.500							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#7	Leq	Α	dB	53,0	49,3	65,4	50,2	50,4	51,7
#7	Slow Max	Α	dB		49,6	64,8	50,5	50,7	52,0
#7	Fast Max	Α	dB		50,1	68,9	50,6	50,9	52,4
#7	Impuls Max	Α	dB		50,8	73,3	51,7	52,1	53,7
#7	1/3 Ott 20Hz	Lin	dB	61,9	49,9	72,0	54,2	55,4	59,2
#7	1/3 Ott 25Hz	Lin	dB	63,8	51,5	71,3	58,5	59,7	63,1
#7	1/3 Ott 31.5Hz	Lin	dB	61,5	52,3	68,0	56,9	57,8	61,0
#7	1/3 Ott 40Hz	Lin	dB	59,2	50,0	67,4	54,9	55,8	58,8
#7	1/3 Ott 50Hz	Lin	dB	59,5	52,0	70,5	55,0	56,0	59,0
#7	1/3 Ott 63Hz	Lin	dB	54,3	48,2	63,8	50,3	51,0	53,2
#7	1/3 Ott 80Hz	Lin	dB	54,1	46,1	62,2	50,1	51,0	53,4
#7	1/3 Ott 100Hz	Lin	dB	50,3	44,4	64,4	46,5	47,1	49,5
#7	1/3 Ott 125Hz	Lin	dB	46,0	40,1	62,5	41,8	42,3	44,2
#7	1/3 Ott 160Hz	Lin	dB	52,9	48,0	60,4	50,1	50,7	52,6
#7	1/3 Ott 200Hz	Lin	dB	48,8	44,1	56,6	46,1	46,7	48,4
#7	1/3 Ott 250Hz	Lin	dB	44,2	38,9	54,6	40,8	41,3	43,8
#7	1/3 Ott 315Hz	Lin	dB	44,5	41,0	53,9	42,0	42,4	43,8
#7	1/3 Ott 400Hz	Lin	dB	45,7	41,0	57,0	42,6	43,0	44,9
#7	1/3 Ott 500Hz	Lin	dB	42,8	39,2	56,0	40,1	40,4	41,6
#7	1/3 Ott 630Hz	Lin	dB	43,2	39,5	54,8	40,4	40,8	42,1
#7	1/3 Ott 800Hz	Lin	dB	44,5	38,6	58,8	40,6	41,0	43,1
#7	1/3 Ott 1kHz	Lin	dB	45,6	39,1	59,4	40,7	41,4	43,8
#7	1/3 Ott 1.25kHz	Lin	dB	43,3	37,4	58,4	38,6	39,1	41,3
#7	1/3 Ott 1.6kHz	Lin	dB	41,8	36,4	56,1	37,6	38,0	40,0
#7	1/3 Ott 2kHz	Lin	dB	40,3	34,7	56,6	35,9	36,2	38,0
#7	1/3 Ott 2.5kHz	Lin	dB	36,7	31,1	53,8	31,8	32,1	33,5
#7	1/3 Ott 3.15kHz	Lin	dB	36,2	31,7	51,8	32,5	32,8	34,1
#7	1/3 Ott 4kHz	Lin	dB	34,2	28,8	51,1	29,7	30,0	31,6
#7	1/3 Ott 5kHz	Lin	dB	32,5	26,5	48,0	27,5	27,9	29,7
#7	1/3 Ott 6.3kHz	Lin	dB	30,9	24,4	48,8	25,2	25,9	28,0
#7	1/3 Ott 8kHz	Lin	dB	28,5	20,6	47,9	21,9	22,6	24,7
#7	1/3 Ott 10kHz	Lin	dB	25,5	16,2	44,2	18,0	18,6	20,9
#7	1/3 Ott 12.5kHz	Lin	dB	22,2	11,3	41,5	13,3	13,9	16,3
#7	1/3 Ott 16kHz	Lin	dB	18,7	7,3	39,8	8,8	9,2	11,0
#7	1/3 Ott 20kHz	Lin	dB	15,1	6,2	38,8	6,5	6,7	7,4

Decreto 16 marzo 1998						
File	per_007					
Ubicazione	#7					
Sorgente	amb					
Tipo dati	Leq					
Pesatura	A					
Inizio	12/12/19 16.34.14.000					
Fine	12/12/19 16.41.30.500					
Tempo di riferimento	Diurno (tra le h 6:00 e le h 22:00)					
Componenti impulsive						
Conteggio impulsi	0					
Frequenza di ripetizione	0,0 impulsi / ora					
Ripetitività autorizzata	10					
Fattore correttivo KI	0,0 dBA					
Componenti tonali						
Fattore correttivo KT	0,0 dBA					
Componenti bassa frequenza						
Fattore correttivo KB	0,0 dBA					
Presenza di rumore a tempo parziale						
Fattore correttivo KP	0,0 dBA					
Livelli						
Rumore ambientale misurato LM	53,0 dBA					
Rumore ambientale LA = LM + KP	53,0 dBA					
Rumore residuo LR						
Differenziale LD = LA - LR						
Rumore corretto LC = LA + KI + KT + KB	53,0 dBA					



Misura P3 diurno:

File	per_012								
Inizio	12/12/19 17.26.3	1.000							
Fine	12/12/19 17.36.3	3.000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#12	Leq	Α	dB	66,5	62,5	77,9	62,9	63,1	65,0
#12	Slow Max	Α	dB		62,7	76,9	63,0	63,3	65,3
#12	Fast Max	Α	dB		62,7	78,2	63,2	63,4	65,4
#12	Impuls Max	Α	dB		63,3	79,0	63,7	64,1	66,4
#12	1/3 Ott 20Hz	Lin	dB	60,5	50,6	68,8	55,2	56,2	59,4
#12	1/3 Ott 25Hz	Lin	dB	67,1	58,8	72,0	62,9	63,8	66,7
#12	1/3 Ott 31.5Hz	Lin	dB	64,8	54,7	75,2	59,4	60,4	63,9
#12	1/3 Ott 40Hz	Lin	dB	63,1	54,2	74,2	57,8	58,7	61,8
#12	1/3 Ott 50Hz	Lin	dB	65,1	54,5	81,2	58,6	59,3	62,5
#12	1/3 Ott 63Hz	Lin	dB	64,6	55,8	84,2	58,4	59,1	61,5
#12	1/3 Ott 80Hz	Lin	dB	73,5	68,0	85,2	69,9	70,5	73,2
#12	1/3 Ott 100Hz	Lin	dB	60,7	53,5	69,8	56,4	56,8	59,2
#12	1/3 Ott 125Hz	Lin	dB	60,0	51,5	73,9	53,9	54,6	57,0
#12	1/3 Ott 160Hz	Lin	dB	58,9	50,6	72,0	53,1	53,5	55,9
#12	1/3 Ott 200Hz	Lin	dB	57,6	48,7	70,0	51,0	51,5	54,5
#12	1/3 Ott 250Hz	Lin	dB	57,2	48,7	69,3	51,1	51,7	54,0
#12	1/3 Ott 315Hz	Lin	dB	56,9	49,7	70,8	51,1	51,5	53,8
#12	1/3 Ott 400Hz	Lin	dB	57,2	50,1	76,2	51,2	51,6	53,5
#12	1/3 Ott 500Hz	Lin	dB	57,6	50,6	74,2	52,2	52,6	54,3
#12	1/3 Ott 630Hz	Lin	dB	56,8	52,0	71,9	52,9	53,2	54,6
#12	1/3 Ott 800Hz	Lin	dB	57,3	53,1	68,4	54,3	54,6	56,1
#12	1/3 Ott 1kHz	Lin	dB	57,3	53,2	65,4	54,0	54,3	56,3
#12	1/3 Ott 1.25kHz	Lin	dB	56,7	52,0	65,2	52,9	53,4	55,7
#12	1/3 Ott 1.6kHz	Lin	dB	56,3	50,7	64,0	51,6	52,0	55,0
#12	1/3 Ott 2kHz	Lin	dB	55,8	50,1	63,5	51,2	51,6	54,3
#12	1/3 Ott 2.5kHz	Lin	dB	53,4	47,3	66,6	48,1	48,3	50,9
#12	1/3 Ott 3.15kHz	Lin	dB	52,7	48,3	63,9	49,9	50,1	51,4
#12	1/3 Ott 4kHz	Lin	dB	49,0	43,6	63,3	45,9	46,2	47,4
#12	1/3 Ott 5kHz	Lin	dB	46,5	41,6	61,5	43,5	44,1	45,2
#12	1/3 Ott 6.3kHz	Lin	dB	43,8	38,4	61,9	39,8	40,4	41,5
#12	1/3 Ott 8kHz	Lin	dB	40,3	36,2	56,3	37,6	37,9	38,8
#12	1/3 Ott 10kHz	Lin	dB	36,4	32,5	52,8	33,7	34,0	35,0
#12	1/3 Ott 12.5kHz	Lin	dB	32,1	28,2	45,7	29,5	29,9	30,9
#12	1/3 Ott 16kHz	Lin	dB	28,5	23,1	42,3	24,1	24,4	25,5
#12	1/3 Ott 20kHz	Lin	dB	22,3	14,3	44,9	18,0	18,6	20,0

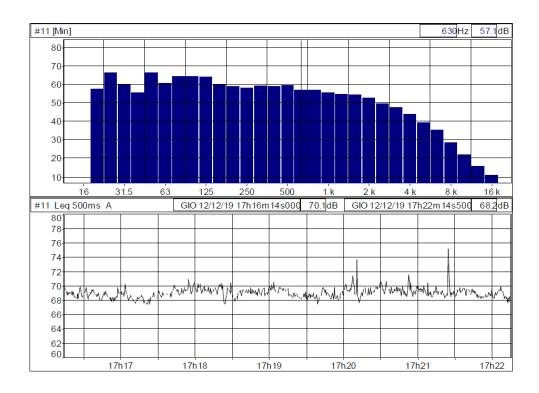
Decreto 16 marzo 1998							
File	per_012						
Ubicazione	#12						
Sorgente	amb						
Tipo dati	Leq						
Pesatura	Α						
lnizio	12/12/19	17.26.31.000					
Fine	12/12/19	17.36.33.000					
Tempo di riferimento	Diurno (tr	a le h 6:00 e le h 22	:00)				
Componenti impulsive							
Conteggio impulsi	1						
Frequenza di ripetizione	5,9 impu	si / ora					
Ripetitività autorizzata	10						
Fattore correttivo KI	0,0 dBA						
Componenti tonali							
Frequenza	Livello	Differenza	Isofonica	Altre is of oniche	Tocca ?		
80Hz	68,0 dB	12,2 dB / 14,5 dB	56,7 dB	55,6 dB	X		
Fattore correttivo KT	3,0 dBA						
Componenti bassa frequenza							
Fattore correttivo KB	0,0 dBA						
Presenza di rumore a tempo parziale							
Fattore correttivo KP	0,0 dBA						
Livelli							
Rumore ambientale misurato LM	66,5 dBA						
Rumore ambientale LA = LM + KP	66,5 dBA						
Rumore residuo LR							
Differenziale LD = LA - LR							
Rumore corretto LC = LA + KI + KT + KB	69,5 dBA						



Misura P3-bis diurno:

File	per_013								
Inizio	12/12/19 17.38.2	3.000							
Fine	12/12/19 17.47.2	4.000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#13	Leq	Α	dB	65,4	63,8	69,6	64,1	64,3	65,1
#13	Slow Max	Α	dB		61,6	68,4	64,3	64,5	65,2
#13	Fast Max	Α	dB		64,1	72,1	64,5	64,6	65,4
#13	Impuls Max	Α	dB		64,5	76,3	65,0	65,1	66,0
#13	1/3 Ott 20Hz	Lin	dB	61,5	50,3	70,5	55,9	56,9	60,6
#13	1/3 Ott 25Hz	Lin	dB	64,3	53,2	71,9	58,9	60,1	63,4
#13	1/3 Ott 31.5Hz	Lin	dB	63,9	55,5	73,9	58,9	59,8	63,1
#13	1/3 Ott 40Hz	Lin	dB	64,5	54,4	75,2	59,7	60,9	63,7
#13	1/3 Ott 50Hz	Lin	dB	67,0	59,2	75,8	62,6	63,4	66,1
#13	1/3 Ott 63Hz	Lin	dB	67,3	59,7	74,6	63,6	64,5	66,8
#13	1/3 Ott 80Hz	Lin	dB	65,1	58,2	70,7	61,5	62,1	64,7
#13	1/3 Ott 100Hz	Lin	dB	60,3	54,2	66,2	57,5	58,0	59,8
#13	1/3 Ott 125Hz	Lin	dB	57,3	52,4	66,5	54,0	54,5	56,6
#13	1/3 Ott 160Hz	Lin	dB	55,7	50,5	65,3	52,5	53,0	54,9
#13	1/3 Ott 200Hz	Lin	dB	54,5	49,7	67,5	51,0	51,5	53,4
#13	1/3 Ott 250Hz	Lin	dB	53,8	49,9	63,1	51,2	51,6	53,0
#13	1/3 Ott 315Hz	Lin	dB	57,6	53,9	60,5	55,5	56,0	57,4
#13	1/3 Ott 400Hz	Lin	dB	56,9	53,1	59,9	55,0	55,4	56,7
#13	1/3 Ott 500Hz	Lin	dB	57,4	54,3	64,0	55,8	56,1	57,0
#13	1/3 Ott 630Hz	Lin	dB	56,9	52,8	65,1	54,7	55,2	56,5
#13	1/3 Ott 800Hz	Lin	dB	55,3	52,0	63,5	52,9	53,2	54,5
#13	1/3 Ott 1kHz	Lin	dB	56,3	51,8	63,7	53,1	53,6	55,7
#13	1/3 Ott 1.25kHz	Lin	dB	54,3	50,3	61,9	51,1	51,4	53,3
#13	1/3 Ott 1.6kHz	Lin	dB	53,6	50,6	59,8	51,4	51,7	53,0
#13	1/3 Ott 2kHz	Lin	dB	56,1	52,8	60,9	53,8	54,2	55,7
#13	1/3 Ott 2.5kHz	Lin	dB	51,5	50,2	54,9	50,4	50,6	51,2
#13	1/3 Ott 3.15kHz	Lin	dB	51,6	50,1	54,9	50,8	50,9	51,4
#13	1/3 Ott 4kHz	Lin	dB	50,0	48,8	54,1	49,2	49,3	49,8
#13	1/3 Ott 5kHz	Lin	dB	48,8	47,2	54,0	47,7	47,8	48,5
#13	1/3 Ott 6.3kHz	Lin	dB	45,4	42,9	51,8	43,6	43,7	44,7
#13	1/3 Ott 8kHz	Lin	dB	42,7	39,9	51,1	40,2	40,4	41,5
#13	1/3 Ott 10kHz	Lin	dB	49,3	33,8	59,7	34,3	34,5	35,9
#13	1/3 Ott 12.5kHz	Lin	dB	35,7	26,5	46,1	27,1	27,2	29,5
#13	1/3 Ott 16kHz	Lin	dB	26,5	19,2	45,0	19,7	19,9	22,3
#13	1/3 Ott 20kHz	Lin	dB	23,1	11,6	46,3	11,9	12,1	14,5

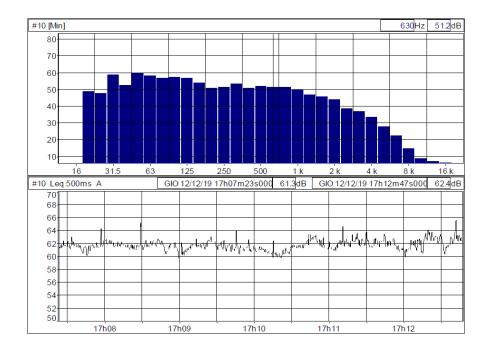
Decreto 16 marzo 1998						
File	per_013					
Ubicazione	#13					
Sorgente	amb					
Tipo dati	Leq					
Pesatura	A					
Inizio	12/12/19 17.38.23.000					
Fine	12/12/19 17.47.24.000					
Tempo di riferimento	Diurno (tra le h 6:00 e le h 22:00)					
Componenti impulsive						
Conteggio impulsi	0					
Frequenza di ripetizione	0,0 impulsi / ora					
Ripetitività autorizzata	10					
Fattore correttivo KI	0,0 dBA					
Componenti tonali						
Fattore correttivo KT	0,0 dBA					
Componenti bassa frequenza						
Fattore correttivo KB	0,0 dBA					
Presenza di rumore a tempo parziale						
Fattore correttivo KP	0,0 dBA					
Livelli						
Rumore ambientale misurato LM	65,4 dBA					
Rumore ambientale LA = LM + KP	65,4 dBA					
Rumore residuo LR						
Differenziale LD = LA - LR						
Rumore corretto LC = LA + KI + KT + KB	65,4 dBA					



Misura P4 diurno:

File	per_011								
Inizio	12/12/19 17.16.1	4.000							
Fine	12/12/19 17.22.1	5.000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#11	Leq	Α	dB	69,1	67,4	75,2	67,9	68,1	68,9
#11	Slow Max	Α	dB		66,0	73,1	68,1	68,3	69,1
#11	Fast Max	Α	dB		67,8	77,8	68,3	68,5	69,3
#11	Impuls Max	Α	dB		68,4	80,0	68,9	69,1	70,1
#11	1/3 Ott 20Hz	Lin	dB	65,6	57,2	76,6	60,1	61,0	64,3
#11	1/3 Ott 25Hz	Lin	dB	74,4	66,0	78,2	70,2	71,1	74,1
#11	1/3 Ott 31.5Hz	Lin	dB	69,3	59,8	77,7	64,3	65,4	68,7
#11	1/3 Ott 40Hz	Lin	dB	63,7	55,6	72,4	59,0	59,6	62,4
#11	1/3 Ott 50Hz	Lin	dB	76,5	66,0	81,0	71,4	72,6	76,2
#11	1/3 Ott 63Hz	Lin	dB	72,9	60,8	81,4	65,0	66,2	71,3
#11	1/3 Ott 80Hz	Lin	dB	71,5	64,5	79,9	66,6	67,4	70,7
#11	1/3 Ott 100Hz	Lin	dB	72,0	64,4	84,1	66,9	67,6	70,9
#11	1/3 Ott 125Hz	Lin	dB	72,7	64,0	84,0	69,0	69,7	72,3
#11	1/3 Ott 160Hz	Lin	dB	64,4	60,0	74,5	61,9	62,3	64,0
#11	1/3 Ott 200Hz	Lin	dB	64,4	58,8	72,9	61,9	62,4	63,9
#11	1/3 Ott 250Hz	Lin	dB	62,7	58,1	73,8	59,6	60,1	62,1
#11	1/3 Ott 315Hz	Lin	dB	63,6	59,0	68,8	61,2	61,7	63,1
#11	1/3 Ott 400Hz	Lin	dB	61,3	58,8	68,5	59,6	59,8	61,0
#11	1/3 Ott 500Hz	Lin	dB	62,3	59,7	68,4	60,6	60,9	62,1
#11	1/3 Ott 630Hz	Lin	dB	60,0	57,1	66,1	58,2	58,5	59,7
#11	1/3 Ott 800Hz	Lin	dB	59,9	57,1	65,5	58,4	58,7	59,7
#11	1/3 Ott 1kHz	Lin	dB	58,4	55,5	64,7	56,8	57,0	58,2
#11	1/3 Ott 1.25kHz	Lin	dB	57,8	54,9	62,6	55,8	56,2	57,5
#11	1/3 Ott 1.6kHz	Lin	dB	57,9	54,5	61,0	55,7	56,1	57,6
#11	1/3 Ott 2kHz	Lin	dB	56,9	52,5	60,4	54,3	54,8	56,7
#11	1/3 Ott 2.5kHz	Lin	dB	54,3	49,7	60,7	51,1	51,9	54,0
#11	1/3 Ott 3.15kHz	Lin	dB	52,0	47,4	55,6	49,0	49,7	51,8
#11	1/3 Ott 4kHz	Lin	dB	48,2	43,6	52,2	44,8	45,6	48,0
#11	1/3 Ott 5kHz	Lin	dB	44,6	39,2	49,4	40,9	41,6	44,4
#11	1/3 Ott 6.3kHz	Lin	dB	41,3	35,0	47,0	37,2	38,2	41,0
#11	1/3 Ott 8kHz	Lin	dB	35,7	28,6	41,1	31,6	32,5	35,4
#11	1/3 Ott 10kHz	Lin	dB	29,3	21,8	35,0	25,2	26,3	28,9
#11	1/3 Ott 12.5kHz	Lin	dB	22,4	15,5	34,3	18,3	19,1	21,8
#11	1/3 Ott 16kHz	Lin	dB	17,3	10,9	33,5	13,0	13,6	15,5
#11	1/3 Ott 20kHz	Lin	dB	16,1	6,5	36,5	6,9	7,0	7,8

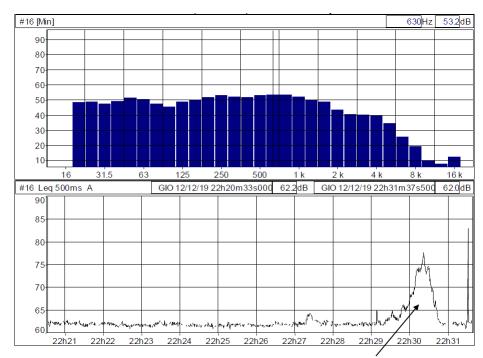
	Decreto 1	6 marzo 1998					
File	per_011						
Ubicazione	#11						
Sorgente	amb						
Tipo dati	Leq	Leq					
Pesatura	Α						
lnizio	12/12/19	17.16.14.000					
Fine	12/12/19	17.22.15.000					
Tempo di riferimento	Diurno (t	ra le h 6:00 e le h 2	2:00)				
Componenti impulsive							
Conteggio impulsi	0						
Frequenza di ripetizione	0,0 impu	lsi / ora					
Ripetitività autorizzata	10	10					
Fattore correttivo KI	0,0 dBA						
Componenti tonali							
Frequenza	Livello	Differenza	Isofonica	Altre is of oniche	Tocca ?		
25Hz	66,0 dB	8,8 dB / 6,2 dB	6,3 dB	63,6 dB			
50Hz	66,0 dB	10,4 dB / 5,2 dB	42,9 dB	63,6 dB			
Fattore correttivo KT	0,0 dBA						
Componenti bassa frequenza							
Fattore correttivo KB	0,0 dBA						
Presenza di rumore a tempo parziale							
Fattore correttivo KP	0,0 dBA						
Livelli							
Rumore ambientale misurato LM	69,1 dBA						
Rumore ambientale LA = LM + KP	69,1 dBA	69,1 dBA					
Rumore residuo LR							
Differenziale LD = LA - LR							
Rumore corretto LC = LA + KI + KT + KB	69,1 dBA						



Misura P6 diurno:

File	per_010								
Inizio	12/12/19 17.07.2	3.000							
Fine	12/12/19 17.12.4	7.500							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#10	Leq	Α	dB	61,8	59,7	65,6	60,4	60,6	61,6
#10	Slow Max	Α	dB		57,2	64,6	60,6	60,9	61,7
#10	Fast Max	Α	dB		60,3	67,3	60,8	61,1	62,0
#10	Impuls Max	Α	dB		61,0	69,4	61,6	61,9	62,8
#10	1/3 Ott 20Hz	Lin	dB	64,2	48,7	82,9	55,7	56,9	60,8
#10	1/3 Ott 25Hz	Lin	dB	61,0	47,5	73,8	54,3	55,4	59,3
#10	1/3 Ott 31.5Hz	Lin	dB	69,1	58,4	75,2	63,2	64,7	68,4
#10	1/3 Ott 40Hz	Lin	dB	60,4	52,4	68,5	56,3	56,8	59,4
#10	1/3 Ott 50Hz	Lin	dB	68,9	59,3	75,5	63,3	64,2	67,9
#10	1/3 Ott 63Hz	Lin	dB	65,3	57,7	71,2	60,4	61,3	64,5
#10	1/3 Ott 80Hz	Lin	dB	65,0	56,5	73,3	60,3	61,1	64,2
#10	1/3 Ott 100Hz	Lin	dB	64,5	57,1	72,6	60,1	60,9	63,8
#10	1/3 Ott 125Hz	Lin	dB	64,1	56,2	69,9	59,6	60,4	63,8
#10	1/3 Ott 160Hz	Lin	dB	59,2	53,9	64,2	55,5	56,1	58,5
#10	1/3 Ott 200Hz	Lin	dB	56,8	50,5	62,5	52,8	53,3	55,9
#10	1/3 Ott 250Hz	Lin	dB	58,3	51,2	66,2	53,4	54,0	56,4
#10	1/3 Ott 315Hz	Lin	dB	57,5	53,2	62,0	54,8	55,3	57,2
#10	1/3 Ott 400Hz	Lin	dB	54,6	50,5	58,3	52,4	52,9	54,3
#10	1/3 Ott 500Hz	Lin	dB	55,3	51,4	59,7	53,0	53,5	55,1
#10	1/3 Ott 630Hz	Lin	dB	54,3	51,2	59,5	52,1	52,5	54,1
#10	1/3 Ott 800Hz	Lin	dB	53,9	51,1	57,6	52,1	52,4	53,6
#10	1/3 Ott 1kHz	Lin	dB	51,8	49,2	55,8	49,9	50,2	51,5
#10	1/3 Ott 1.25kHz	Lin	dB	49,5	46,5	59,2	47,7	48,0	49,1
#10	1/3 Ott 1.6kHz	Lin	dB	48,7	45,4	58,5	46,5	47,1	48,4
#10	1/3 Ott 2kHz	Lin	dB	47,2	43,7	54,3	44,9	45,4	46,9
#10	1/3 Ott 2.5kHz	Lin	dB	43,3	38,3	48,0	40,9	41,4	43,0
#10	1/3 Ott 3.15kHz	Lin	dB	41,4	36,6	47,2	38,5	39,3	41,1
#10	1/3 Ott 4kHz	Lin	dB	37,7	33,1	44,9	35,1	35,5	37,2
#10	1/3 Ott 5kHz	Lin	dB	32,9	27,6	43,3	29,5	30,1	32,0
#10	1/3 Ott 6.3kHz	Lin	dB	28,4	22,0	44,9	23,6	24,0	26,1
#10	1/3 Ott 8kHz	Lin	dB	24,3	14,3	44,0	15,8	16,2	18,2
#10	1/3 Ott 10kHz	Lin	dB	21,7	8,6	43,1	9,0	9,2	10,7
#10	1/3 Ott 12.5kHz	Lin	dB	19,6	6,6	40,4	6,8	6,9	7,6
#10	1/3 Ott 16kHz	Lin	dB	16,6	6,1	37,4	6,2	6,2	6,7
#10	1/3 Ott 20kHz	Lin	dB	12,3	5,8	32,1	5,8	5,9	6,1

	Decreto 1	6 marzo 1998					
File	per_010						
Ubicazione	#10						
Sorgente	amb						
Tipo dati	Leq	Leq					
Pesatura	Α						
Inizio	12/12/19	17.07.23.000					
Fine	12/12/19	17.12.47.500					
Tempo di riferimento	Diurno (t	ra le h 6:00 e le h 2	2:00)				
Componenti impulsive							
Conteggio impulsi	0						
Frequenza di ripetizione	0,0 impu	0,0 impulsi / ora					
Ripetitività autorizzata	10						
Fattore correttivo KI	0,0 dBA						
Componenti tonali							
Frequenza	Livello	Differenza	Isofonica	Altre is ofoniche	Tocca ?		
31.5Hz	58,4 dB	10,9 dB / 6,0 dB	8,4 dB	56,6 dB			
Fattore correttivo KT	0,0 dBA						
Componenti bassa frequenza							
Fattore correttivo KB	0,0 dBA						
Presenza di rumore a tempo parziale							
Fattore correttivo KP	0,0 dBA						
Livelli							
Rumore ambientale misurato LM	61,8 dBA						
Rumore ambientale LA = LM + KP	61,8 dBA						
Rumore residuo LR							
Differenziale LD = LA - LR							
Rumore corretto LC = LA + KI + KT + KB	61,8 dBA						

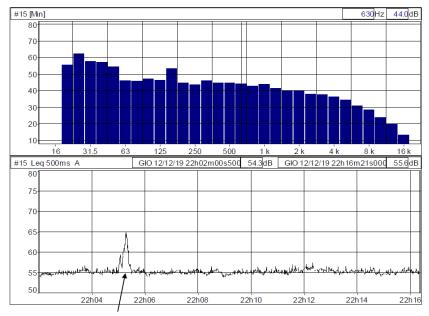


Misura P1 notturno:

File	per_016								
Inizio	12/12/19 22.20.3	3.000							
Fine	12/12/19 22.31.3	8.000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#16	Leq	Α	dB	61,9	60,8	64,9	61,3	61,4	61,7
#16	Slow Max	Α	dB		58,1	69,1	61,4	61,5	61,8
#16	Fast Max	Α	dB		61,3	66,6	61,6	61,7	62,1
#16	Impuls Max	Α	dB		61,8	83,1	62,2	62,3	62,7
#16	1/3 Ott 20Hz	Lin	dB	58,5	48,0	67,7	52,3	53,6	57,3
#16	1/3 Ott 25Hz	Lin	dB	61,0	48,4	68,3	55,1	56,4	60,2
#16	1/3 Ott 31.5Hz	Lin	dB	57,2	47,4	65,9	52,5	53,3	56,3
#16	1/3 Ott 40Hz	Lin	dB	57,2	48,9	67,5	52,6	53,6	56,3
#16	1/3 Ott 50Hz	Lin	dB	58,8	51,1	71,9	54,5	55,3	58,0
#16	1/3 Ott 63Hz	Lin	dB	58,1	50,4	74,0	54,3	55,0	57,3
#16	1/3 Ott 80Hz	Lin	dB	53,0	47,3	63,3	49,8	50,4	52,5
#16	1/3 Ott 100Hz	Lin	dB	51,4	45,3	56,5	48,4	49,0	51,0
#16	1/3 Ott 125Hz	Lin	dB	52,9	48,5	56,4	50,6	51,0	52,6
#16	1/3 Ott 160Hz	Lin	dB	53,5	49,7	56,5	51,6	51,9	53,3
#16	1/3 Ott 200Hz	Lin	dB	54,9	51,5	57,0	53,2	53,6	54,7
#16	1/3 Ott 250Hz	Lin	dB	55,7	52,8	58,5	54,1	54,4	55,6
#16	1/3 Ott 315Hz	Lin	dB	55,2	52,1	57,5	53,8	54,1	55,0
#16	1/3 Ott 400Hz	Lin	dB	54,1	51,8	56,8	52,7	53,0	54,0
#16	1/3 Ott 500Hz	Lin	dB	55,1	52,8	58,1	53,7	54,0	54,9
#16	1/3 Ott 630Hz	Lin	dB	55,3	53,2	59,0	54,1	54,3	55,1
#16	1/3 Ott 800Hz	Lin	dB	55,4	53,5	58,7	54,3	54,5	55,2
#16	1/3 Ott 1kHz	Lin	dB	53,6	51,9	55,9	52,7	52,9	53,5
#16	1/3 Ott 1.25kHz	Lin	dB	51,5	50,0	53,8	50,6	50,8	51,4
#16	1/3 Ott 1.6kHz	Lin	dB	50,2	48,6	54,0	49,2	49,4	50,0
#16	1/3 Ott 2kHz	Lin	dB	46,1	43,6	53,8	45,0	45,1	45,7
#16	1/3 Ott 2.5kHz	Lin	dB	42,3	40,5	51,7	41,3	41,4	41,9
#16	1/3 Ott 3.15kHz	Lin	dB	41,6	39,9	52,0	40,7	40,9	41,4
#16	1/3 Ott 4kHz	Lin	dB	40,6	39,3	46,1	39,6	39,8	40,4
#16	1/3 Ott 5kHz	Lin	dB	35,8	34,5	45,9	34,9	35,1	35,6
#16	1/3 Ott 6.3kHz	Lin	dB	27,0	25,5	41,3	25,9	26,0	26,6
#16	1/3 Ott 8kHz	Lin	dB	21,5	18,9	34,1	19,7	19,9	20,9
#16	1/3 Ott 10kHz	Lin	dB	13,0	10,0	30,3	10,3	10,5	11,5
#16	1/3 Ott 12.5kHz	Lin	dB	10,4	7,5	28,1	7,8	7,9	8,9
#16	1/3 Ott 16kHz	Lin	dB	19,4	12,0	26,0	15,2	15,8	18,6
#16	1/3 Ott 20kHz	Lin	dB	7,0	5,9	20,9	6,0	6,0	6,3

Transito treno – eliminato in post elaborazione dal livello globale sonoro

Decreto 16 ma	rzo 1998
File	per_016
Ubicazione	#16
Sorgente	amb
Tipo dati	Leq
Pesatura	A
Inizio	12/12/19 22.20.33.000
Fine	12/12/19 22.31.38.000
Tempo di riferimento	Notturno (tra le h 22:00 e le h 6:00)
Componenti impulsive	
Conteggio impulsi	0
Frequenza di ripetizione	0,0 impulsi / ora
Ripetitività autorizzata	2 impulsi / ora
Fattore correttivo KI	0,0 dBA
Componenti tonali	
Fattore correttivo KT	0,0 dBA
Componenti bassa frequenza	
Fattore correttivo KB	0,0 dBA
Livelli	
Rumore ambientale LA	61,9 dBA
Rumore residuo LR	
Differenziale LD = LA - LR	
Rumore corretto LC = LA + KI + KT + KB	61,9 dBA

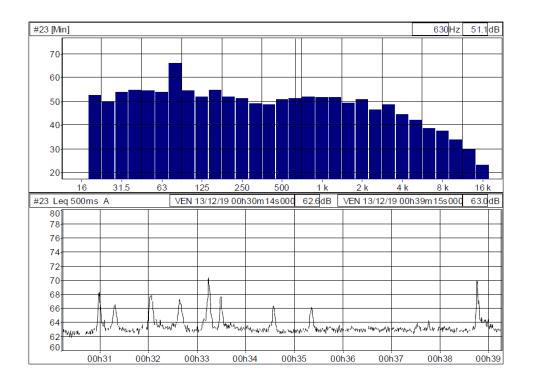


Misura P2 notturno:

File	per_015								
Inizio	12/12/19 22.02.0	0.500							
Fine	12/12/19 22.16.2	1.500							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#15	Leq	Α	dB	55,2	53,8	57,4	54,3	54,5	55,0
#15	Slow Max	Α	dB		54,0	56,8	54,5	54,6	55,1
#15	Fast Max	Α	dB		54,1	58,7	54,6	54,8	55,4
#15	Impuls Max	Α	dB		54,5	61,9	55,2	55,4	56,0
#15	1/3 Ott 20Hz	Lin	dB	67,0	55,4	77,6	61,1	62,2	65,8
#15	1/3 Ott 25Hz	Lin	dB	71,1	61,9	77,9	65,3	66,8	70,4
#15	1/3 Ott 31.5Hz	Lin	dB	67,6	57,6	72,6	63,2	64,3	67,1
#15	1/3 Ott 40Hz	Lin	dB	64,7	57,3	69,5	60,5	61,3	64,2
#15	1/3 Ott 50Hz	Lin	dB	63,0	54,2	70,2	58,6	59,3	62,2
#15	1/3 Ott 63Hz	Lin	dB	54,1	48,1	63,5	50,4	51,1	53,4
#15	1/3 Ott 80Hz	Lin	dB	52,8	45,7	62,7	49,8	50,4	52,4
#15	1/3 Ott 100Hz	Lin	dB	52,1	47,0	56,7	49,5	50,0	51,8
#15	1/3 Ott 125Hz	Lin	dB	51,4	46,2	55,3	49,0	49,4	51,1
#15	1/3 Ott 160Hz	Lin	dB	56,9	53,4	59,4	55,1	55,6	56,7
#15	1/3 Ott 200Hz	Lin	dB	49,6	44,6	53,8	47,5	48,0	49,3
#15	1/3 Ott 250Hz	Lin	dB	46,7	43,3	49,1	45,1	45,4	46,6
#15	1/3 Ott 315Hz	Lin	dB	49,2	46,0	51,9	47,6	47,9	49,0
#15	1/3 Ott 400Hz	Lin	dB	47,6	44,6	51,6	45,9	46,3	47,4
#15	1/3 Ott 500Hz	Lin	dB	47,0	44,4	49,6	45,5	45,9	46,8
#15	1/3 Ott 630Hz	Lin	dB	46,6	44,0	49,3	45,0	45,3	46,4
#15	1/3 Ott 800Hz	Lin	dB	46,0	42,8	51,5	44,4	44,7	45,8
#15	1/3 Ott 1kHz	Lin	dB	45,7	43,8	48,0	44,6	44,7	45,4
#15	1/3 Ott 1.25kHz	Lin	dB	43,4	41,3	46,3	42,1	42,4	43,2
#15	1/3 Ott 1.6kHz	Lin	dB	42,7	40,1	50,5	41,3	41,5	42,4
#15	1/3 Ott 2kHz	Lin	dB	41,9	39,8	45,5	40,6	40,8	41,6
#15	1/3 Ott 2.5kHz	Lin	dB	40,6	38,0	46,4	38,9	39,2	40,2
#15	1/3 Ott 3.15kHz	Lin	dB	40,6	37,6	45,9	38,6	38,9	40,2
#15	1/3 Ott 4kHz	Lin	dB	39,3	36,2	44,9	37,3	37,6	39,0
#15	1/3 Ott 5kHz	Lin	dB	38,2	34,4	43,5	35,9	36,3	37,9
#15	1/3 Ott 6.3kHz	Lin	dB	36,1	30,9	41,9	33,6	34,0	35,7
#15	1/3 Ott 8kHz	Lin	dB	33,3	28,4	39,7	30,8	31,3	32,9
#15	1/3 Ott 10kHz	Lin	dB	29,2	23,9	39,5	26,7	27,2	28,9
#15	1/3 Ott 12.5kHz	Lin	dB	24,1	19,8	35,7	21,3	21,7	23,6
#15	1/3 Ott 16kHz	Lin	dB	18,0	13,5	34,2	14,8	15,3	17,2
#15	1/3 Ott 20kHz	Lin	dB	11,7	7,9	24,8	8,9	9,2	10,7

Transito treno – eliminato in post elaborazione dal livello globale sonoro

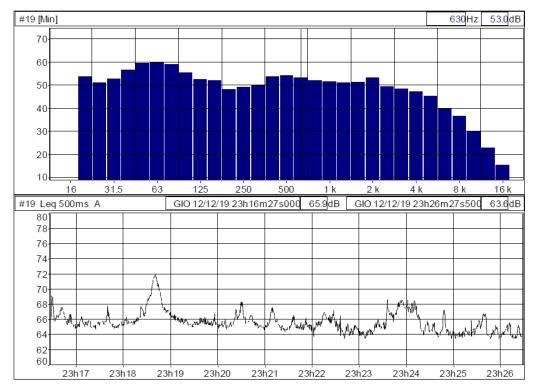
	Decreto 1	6 marzo 1998				
File	per_015					
Ubicazione	#15					
Sorgente	amb					
Tipo dati	Leq					
Pesatura	A					
Inizio	12/12/19 22.02.00.500					
Fine	12/12/19	22.16.21.500				
Tempo di riferimento	Notturno	(tra le h 22:00 e le	h 6:00)			
Componenti impulsive						
Conteggio impulsi	0					
Frequenza di ripetizione	0,0 impulsi / ora					
Ripetitività autorizzata	2 impuls	i / ora				
Fattore correttivo KI	0,0 dBA					
Componenti tonali						
Frequenza	Livello	Differenza	Isofonica	Altre is ofoniche	Tocca ?	
160Hz	53,4 dB	7,2 dB / 8,8 dB	50,8 dB	48,8 dB	X	
Fattore correttivo KT	3,0 dBA					
Componenti bassa frequenza						
Fattore correttivo KB	3,0 dBA					
Livelli						
Rumore ambientale LA	55,2 dBA					
Rumore residuo LR						
Differenziale LD = LA - LR						
Rumore corretto LC = LA + KI + KT + KB	61,2 dBA					



Misura P3 notturno:

File	per_023								
Inizio	13/12/19 00.30.1	4.000							
Fine	13/12/19 00.39.1	5.500							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#23	Leq	Α	dB	63,6	61,9	70,3	62,4	62,5	62,9
#23	Slow Max	Α	dB		58,5	69,4	62,4	62,7	63,0
#23	Fast Max	Α	dB		62,2	70,9	62,6	62,8	63,2
#23	Impuls Max	Α	dB		62,7	71,4	63,1	63,2	63,7
#23	1/3 Ott 20Hz	Lin	dB	60,9	52,4	67,6	57,1	57,9	60,5
#23	1/3 Ott 25Hz	Lin	dB	60,2	49,9	66,4	55,2	56,2	59,6
#23	1/3 Ott 31.5Hz	Lin	dB	63,0	53,8	68,9	58,2	59,2	62,3
#23	1/3 Ott 40Hz	Lin	dB	62,6	54,7	71,8	58,5	59,4	62,1
#23	1/3 Ott 50Hz	Lin	dB	61,2	54,2	69,9	57,4	58,1	60,5
#23	1/3 Ott 63Hz	Lin	dB	60,9	53,9	71,2	57,7	58,3	60,1
#23	1/3 Ott 80Hz	Lin	dB	72,6	65,8	76,4	67,7	68,2	72,4
#23	1/3 Ott 100Hz	Lin	dB	59,9	54,4	66,9	57,3	57,8	59,5
#23	1/3 Ott 125Hz	Lin	dB	57,7	51,9	63,8	55,3	55,7	57,3
#23	1/3 Ott 160Hz	Lin	dB	57,9	54,7	63,9	56,0	56,4	57,5
#23	1/3 Ott 200Hz	Lin	dB	54,7	51,8	59,0	53,0	53,3	54,5
#23	1/3 Ott 250Hz	Lin	dB	54,7	51,3	60,9	52,4	52,9	54,3
#23	1/3 Ott 315Hz	Lin	dB	53,3	48,9	60,3	51,0	51,3	52,8
#23	1/3 Ott 400Hz	Lin	dB	51,4	48,3	59,6	49,7	49,9	50,8
#23	1/3 Ott 500Hz	Lin	dB	53,4	50,8	58,4	51,8	52,1	53,1
#23	1/3 Ott 630Hz	Lin	dB	54,3	51,1	59,1	52,9	53,1	54,0
#23	1/3 Ott 800Hz	Lin	dB	53,9	51,8	60,6	52,6	52,9	53,6
#23	1/3 Ott 1kHz	Lin	dB	53,8	51,6	62,2	52,2	52,4	53,2
#23	1/3 Ott 1.25kHz	Lin	dB	53,8	51,5	62,9	52,1	52,3	53,1
#23	1/3 Ott 1.6kHz	Lin	dB	52,3	49,2	62,2	50,0	50,1	50,8
#23	1/3 Ott 2kHz	Lin	dB	54,3	50,6	62,7	51,9	52,3	53,5
#23	1/3 Ott 2.5kHz	Lin	dB	49,8	46,5	59,7	47,3	47,9	48,6
#23	1/3 Ott 3.15kHz	Lin	dB	50,2	48,3	57,4	48,9	49,1	49,9
#23	1/3 Ott 4kHz	Lin	dB	47,4	44,4	52,2	45,5	46,6	47,2
#23	1/3 Ott 5kHz	Lin	dB	45,4	42,0	49,1	43,2	44,8	45,3
#23	1/3 Ott 6.3kHz	Lin	dB	41,7	38,5	45,3	39,5	41,0	41,6
#23	1/3 Ott 8kHz	Lin	dB	38,8	37,4	41,7	37,9	38,1	38,6
#23	1/3 Ott 10kHz	Lin	dB	34,7	33,7	37,0	34,0	34,1	34,6
#23	1/3 Ott 12.5kHz	Lin	dB	30,6	29,4	32,7	29,8	29,9	30,4
#23	1/3 Ott 16kHz	Lin	dB	26,8	23,1	36,5	23,6	23,7	24,2
#23	1/3 Ott 20kHz	Lin	dB	18,7	17,2	23,2	17,8	17,9	18,5

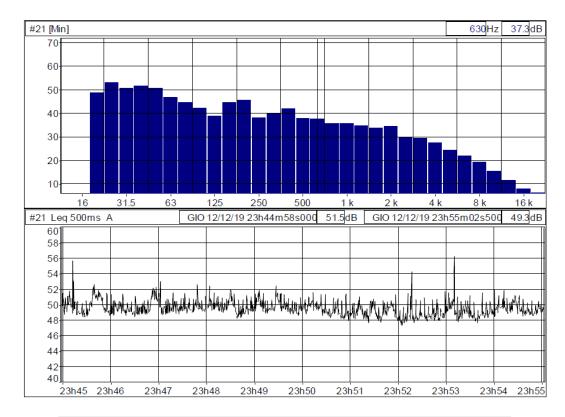
	Decreto	16 marzo 1998					
File	per_023						
Ubicazione	#23						
Sorgente	amb						
Tipo dati	Leq	Leq					
Pesatura	A						
lnizio	13/12/19	00.30.14.000					
Fine	13/12/19	00.39.15.500					
Tempo di riferimento	Notturno	(tra le h 22:00 e le h	6:00)				
Componenti impulsive							
Conteggio impulsi	0	0					
Frequenza di ripetizione	0,0 impulsi / ora						
Ripetitività autorizzata	2 impuls	i / ora					
Fattore correttivo KI	0,0 dBA						
Componenti tonali							
Frequenza	Livello	Differenza	Isofonica	Altre is of oniche	Tocca ?		
80Hz	65,8 dB	11,9 dB / 11,4 dB	53,9 dB	55,6 dB			
Fattore correttivo KT	0,0 dBA						
Componenti bassa frequenza							
Fattore correttivo KB	0,0 dBA						
Livelli							
Rumore ambientale LA	63,6 dBA						
Rumore residuo LR							
Differenziale LD = LA - LR							
Rumore corretto LC = LA + KI + KT + KB	63,6 dBA						



Misura P3-bis notturno:

File	per_019	per_019							
Inizio	12/12/19 23.16.2	7.000							
Fine	12/12/19 23.26.2	8.000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#19	Leq	Α	dB	65,4	63,4	68,3	63,7	63,9	65,2
#19	Slow Max	Α	dB		61,9	68,0	63,9	64,1	65,2
#19	Fast Max	Α	dB		63,5	68,6	64,1	64,3	65,4
#19	Impuls Max	Α	dB		64,3	71,7	64,6	64,9	66,0
#19	1/3 Ott 20Hz	Lin	dB	62,6	53,7	69,2	58,3	59,2	62,1
#19	1/3 Ott 25Hz	Lin	dB	63,1	50,7	69,9	57,6	58,7	62,1
#19	1/3 Ott 31.5Hz	Lin	dB	62,5	52,7	68,7	58,1	59,1	62,0
#19	1/3 Ott 40Hz	Lin	dB	64,9	56,5	69,5	60,9	61,8	64,4
#19	1/3 Ott 50Hz	Lin	dB	67,8	59,4	74,4	63,6	64,2	67,2
#19	1/3 Ott 63Hz	Lin	dB	66,8	59,5	71,9	62,5	63,3	66,2
#19	1/3 Ott 80Hz	Lin	dB	64,9	58,9	68,7	61,7	62,3	64,6
#19	1/3 Ott 100Hz	Lin	dB	61,5	55,1	65,1	58,4	59,1	61,1
#19	1/3 Ott 125Hz	Lin	dB	56,9	52,3	61,9	54,3	54,8	56,6
#19	1/3 Ott 160Hz	Lin	dB	56,0	51,7	59,9	53,4	53,9	55,7
#19	1/3 Ott 200Hz	Lin	dB	53,3	48,1	57,4	50,7	51,3	52,8
#19	1/3 Ott 250Hz	Lin	dB	53,9	48,8	57,7	50,5	51,1	53,7
#19	1/3 Ott 315Hz	Lin	dB	56,6	49,8	62,8	51,6	52,0	56,9
#19	1/3 Ott 400Hz	Lin	dB	58,4	53,6	60,7	55,3	56,0	58,4
#19	1/3 Ott 500Hz	Lin	dB	57,0	53,8	60,4	54,6	55,1	56,8
#19	1/3 Ott 630Hz	Lin	dB	56,5	53,0	63,3	54,4	54,8	56,2
#19	1/3 Ott 800Hz	Lin	dB	54,9	51,7	60,3	52,9	53,2	54,5
#19	1/3 Ott 1kHz	Lin	dB	55,1	51,3	61,1	52,3	52,8	54,3
#19	1/3 Ott 1.25kHz	Lin	dB	53,8	50,7	60,0	51,5	51,8	52,9
#19	1/3 Ott 1.6kHz	Lin	dB	53,3	51,0	58,4	51,7	51,8	52,6
#19	1/3 Ott 2kHz	Lin	dB	56,7	53,1	61,4	54,3	54,6	56,2
#19	1/3 Ott 2.5kHz	Lin	dB	52,3	49,1	55,6	49,9	50,1	52,5
#19	1/3 Ott 3.15kHz	Lin	dB	51,2	48,2	55,0	48,7	48,9	51,3
#19	1/3 Ott 4kHz	Lin	dB	50,1	47,1	56,3	47,6	47,8	50,2
#19	1/3 Ott 5kHz	Lin	dB	49,6	45,3	56,3	45,9	46,1	49,4
#19	1/3 Ott 6.3kHz	Lin	dB	46,2	39,9	56,0	40,6	41,0	45,5
#19	1/3 Ott 8kHz	Lin	dB	43,2	36,3	54,0	37,0	37,2	42,2
#19	1/3 Ott 10kHz	Lin	dB	46,8	29,7	60,1	30,5	30,8	41,2
#19	1/3 Ott 12.5kHz	Lin	dB	35,7	22,6	48,4	23,1	23,5	33,5
#19	1/3 Ott 16kHz	Lin	dB	27,9	15,0	39,8	15,6	16,2	25,2
#19	1/3 Ott 20kHz	Lin	dB	21,7	8,6	37,1	9,0	9,6	19,3

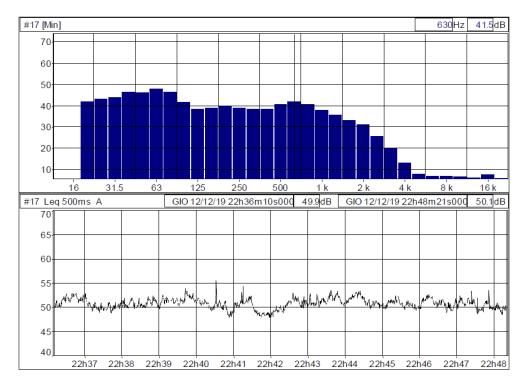
Decreto 16 ma	rzo 1998					
File	per_019					
Ubicazione	#19					
Sorgente	amb					
Tipo dati	Leq					
Pesatura	A					
Inizio	12/12/19 23.16.27.000					
Fine	12/12/19 23.26.28.000					
Tempo di riferimento	Notturno (tra le h 22:00 e le h 6:00)					
Componenti impulsive						
Conteggio impulsi	0					
Frequenza di ripetizione	0,0 impulsi / ora					
Ripetitività autorizzata	2 impulsi / ora					
Fattore correttivo KI	0,0 dBA					
Componenti tonali						
Fattore correttivo KT	0,0 dBA					
Componenti bassa frequenza						
Fattore correttivo KB	0,0 dBA					
Livelli						
Rumore ambientale LA	65,4 dBA					
Rumore residuo LR						
Differenziale LD = LA - LR						
Rumore corretto LC = LA + KI + KT + KB	65,4 dBA					



Misura P4 notturno:

File	per_021								
Inizio	12/12/19 23.44.5	8.000							
Fine	12/12/19 23.55.0	3.000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#21	Leq	Α	dB	49,7	47,4	56,2	48,1	48,3	49,3
#21	Slow Max	Α	dB		47,5	55,0	48,4	48,6	49,6
#21	Fast Max	Α	dB		47,8	61,9	48,5	48,8	50,0
#21	Impuls Max	Α	dB		48,7	66,7	49,6	50,0	51,5
#21	1/3 Ott 20Hz	Lin	dB	60,0	48,6	71,3	53,5	54,7	58,2
#21	1/3 Ott 25Hz	Lin	dB	63,2	52,8	69,6	58,3	59,2	62,4
#21	1/3 Ott 31.5Hz	Lin	dB	60,2	50,4	65,6	56,2	57,0	59,6
#21	1/3 Ott 40Hz	Lin	dB	59,2	51,4	65,4	55,2	55,9	58,7
#21	1/3 Ott 50Hz	Lin	dB	58,5	50,5	64,3	54,2	55,1	57,9
#21	1/3 Ott 63Hz	Lin	dB	52,1	46,6	58,5	48,7	49,3	51,6
#21	1/3 Ott 80Hz	Lin	dB	51,9	44,6	57,1	48,0	48,9	51,3
#21	1/3 Ott 100Hz	Lin	dB	48,2	42,1	56,0	45,3	45,8	47,9
#21	1/3 Ott 125Hz	Lin	dB	45,3	38,5	52,3	40,7	41,3	44,0
#21	1/3 Ott 160Hz	Lin	dB	49,0	44,5	52,6	46,2	46,6	48,7
#21	1/3 Ott 200Hz	Lin	dB	48,8	45,4	51,8	46,9	47,3	48,6
#21	1/3 Ott 250Hz	Lin	dB	41,7	38,1	44,8	39,6	40,0	41,5
#21	1/3 Ott 315Hz	Lin	dB	42,5	39,5	45,5	40,9	41,2	42,3
#21	1/3 Ott 400Hz	Lin	dB	45,1	41,7	49,4	43,2	43,7	44,9
#21	1/3 Ott 500Hz	Lin	dB	40,3	37,8	48,6	38,5	38,8	39,8
#21	1/3 Ott 630Hz	Lin	dB	40,1	37,3	52,5	38,0	38,3	39,4
#21	1/3 Ott 800Hz	Lin	dB	39,6	35,4	49,1	36,6	37,0	38,8
#21	1/3 Ott 1kHz	Lin	dB	39,9	35,4	48,2	36,2	36,6	38,5
#21	1/3 Ott 1.25kHz	Lin	dB	38,0	34,5	46,3	35,5	35,9	37,5
#21	1/3 Ott 1.6kHz	Lin	dB	37,3	33,7	48,8	34,9	35,1	36,7
#21	1/3 Ott 2kHz	Lin	dB	39,0	34,2	48,6	35,7	36,1	38,2
#21	1/3 Ott 2.5kHz	Lin	dB	33,5	29,5	45,8	30,6	31,0	32,7
#21	1/3 Ott 3.15kHz	Lin	dB	32,3	29,3	45,5	30,3	30,5	31,6
#21	1/3 Ott 4kHz	Lin	dB	30,7	27,5	41,8	28,6	28,8	29,8
#21	1/3 Ott 5kHz	Lin	dB	28,5	24,3	36,4	25,6	26,0	27,4
#21	1/3 Ott 6.3kHz	Lin	dB	26,8	21,7	39,4	23,4	23,9	25,4
#21	1/3 Ott 8kHz	Lin	dB	24,9	19,4	42,5	20,9	21,3	23,2
#21	1/3 Ott 10kHz	Lin	dB	21,2	15,3	37,5	16,6	17,0	18,9
#21	1/3 Ott 12.5kHz	Lin	dB	19,2	11,4	43,4	12,4	12,7	14,8
#21	1/3 Ott 16kHz	Lin	dB	14,7	7,9	36,9	8,6	8,9	10,7
#21	1/3 Ott 20kHz	Lin	dB	9,7	6,2	26,4	6,5	6,6	7,5

Decreto 16 ma	rzo 1998
File	per_021
Ubicazione	#21
Sorgente	amb
Tipo dati	Leq
Pesatura	A
Inizio	12/12/19 23.44.58.000
Fine	12/12/19 23.55.03.000
Tempo di riferimento	Notturno (tra le h 22:00 e le h 6:00)
Componenti impulsive	
Conteggio impulsi	0
Frequenza di ripetizione	0,0 impulsi / ora
Ripetitività autorizzata	2 impulsi / ora
Fattore correttivo KI	0,0 dBA
Componenti tonali	
Fattore correttivo KT	0,0 dBA
Componenti bassa frequenza	
Fattore correttivo KB	0,0 dBA
Livelli	
Rumore ambientale LA	49,7 dBA
Rumore residuo LR	
Differenziale LD = LA - LR	
Rumore corretto LC = LA + KI + KT + KB	49,7 dBA



Misura P6 notturno:

File	per_017			_			_		_
Inizio	12/12/19 22.36.1	0.000							
Fine	12/12/19 22.48.2	1.500							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L95	L90	L50
#17	Leq	Α	dB	50,9	47,9	55,5	48,8	49,3	50,7
#17	Slow Max	Α	dB		48,2	53,7	49,0	49,5	50,8
#17	Fast Max	Α	dB		48,2	56,4	49,3	49,7	51,1
#17	Impuls Max	Α	dB		48,9	57,9	50,0	50,5	52,0
#17	1/3 Ott 20Hz	Lin	dB	56,2	41,5	69,2	48,1	49,4	54,0
#17	1/3 Ott 25Hz	Lin	dB	55,8	42,8	65,2	49,3	50,4	54,3
#17	1/3 Ott 31.5Hz	Lin	dB	55,8	43,7	68,0	49,7	50,7	54,4
#17	1/3 Ott 40Hz	Lin	dB	56,0	46,1	65,4	50,5	51,4	54,6
#17	1/3 Ott 50Hz	Lin	dB	58,8	45,9	69,5	51,8	52,8	57,2
#17	1/3 Ott 63Hz	Lin	dB	58,0	47,9	73,6	52,1	52,9	56,0
#17	1/3 Ott 80Hz	Lin	dB	54,3	46,2	62,4	49,2	50,1	53,4
#17	1/3 Ott 100Hz	Lin	dB	47,0	41,2	55,0	43,1	43,9	46,4
#17	1/3 Ott 125Hz	Lin	dB	42,9	38,2	53,0	39,9	40,4	42,4
#17	1/3 Ott 160Hz	Lin	dB	43,5	38,9	53,4	40,9	41,3	43,1
#17	1/3 Ott 200Hz	Lin	dB	45,7	39,4	53,5	42,8	43,2	45,3
#17	1/3 Ott 250Hz	Lin	dB	42,5	38,8	47,5	40,4	40,8	42,2
#17	1/3 Ott 315Hz	Lin	dB	42,5	38,0	51,0	39,6	40,1	42,0
#17	1/3 Ott 400Hz	Lin	dB	43,5	38,0	50,4	40,0	40,8	42,9
#17	1/3 Ott 500Hz	Lin	dB	45,5	40,2	51,1	42,2	42,9	44,9
#17	1/3 Ott 630Hz	Lin	dB	46,2	41,5	49,9	43,4	44,0	45,9
#17	1/3 Ott 800Hz	Lin	dB	43,8	40,3	47,0	41,9	42,3	43,6
#17	1/3 Ott 1kHz	Lin	dB	41,3	37,9	45,9	39,3	39,7	41,1
#17	1/3 Ott 1.25kHz	Lin	dB	39,3	35,5	45,9	37,2	37,6	39,1
#17	1/3 Ott 1.6kHz	Lin	dB	37,6	33,0	46,2	35,4	35,7	37,3
#17	1/3 Ott 2kHz	Lin	dB	35,0	31,0	44,1	32,7	33,2	34,7
#17	1/3 Ott 2.5kHz	Lin	dB	29,8	25,3	41,1	27,0	27,6	29,2
#17	1/3 Ott 3.15kHz	Lin	dB	25,2	19,6	37,9	21,6	22,1	23,9
#17	1/3 Ott 4kHz	Lin	dB	20,1	12,7	33,7	14,7	15,3	17,4
#17	1/3 Ott 5kHz	Lin	dB	15,3	7,6	31,7	8,9	9,2	10,8
#17	1/3 Ott 6.3kHz	Lin	dB	11,9	6,5	30,6	6,7	6,9	7,5
#17	1/3 Ott 8kHz	Lin	dB	11,1	6,5	30,7	6,6	6,7	7,0
#17	1/3 Ott 10kHz	Lin	dB	9,8	6,3	27,0	6,5	6,5	6,8
#17	1/3 Ott 12.5kHz	Lin	dB	8,1	6,1	23,9	6,2	6,3	6,5
#17	1/3 Ott 16kHz	Lin	dB	15,9	7,2	25,4	9,5	10,5	14,7
#17	1/3 Ott 20kHz	Lin	dB	6,4	5,6	23,5	5,7	5,7	5,9

Decreto 16 ma	rzo 1998
File	per_017
Ubicazione	#17
Sorgente	amb
Tipo dati	Leq
Pesatura	A
Inizio	12/12/19 22.36.10.000
Fine	12/12/19 22.48.21.500
Tempo di riferimento	Notturno (tra le h 22:00 e le h 6:00)
Componenti impulsive	
Conteggio impulsi	0
Frequenza di ripetizione	0,0 impulsi / ora
Ripetitività autorizzata	2 impulsi / ora
Fattore correttivo KI	0,0 dBA
Componenti tonali	
Fattore correttivo KT	0,0 dBA
Componenti bassa frequenza	
Fattore correttivo KB	0,0 dBA
Livelli	
Rumore ambientale LA	50,9 dBA
Rumore residuo LR	
Differenziale LD = LA - LR	
Rumore corretto LC = LA + KI + KT + KB	50,9 dBA

Misura M1:

File	1001.CMG								
Inizio	02/02/22 09:57:0	2:000							
Fine	02/02/22 10:02:0	2:000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	57,1	51,4	69,2	52,0	52,5	52,8
#1514	Leq	С	dB	67,7	60,9	76,2	63,5	64,4	64,9
#1514	Picco	С	dB	ļ	70,9	86,5			
#1514	1/3 Ott 12.5Hz	Lin	dB	60,5	34,9	72,9	44,3	49,1	51,4
#1514	1/3 Ott 16Hz	Lin	dB	64,4	41,9	74,0	50,4	54,9	57,2
#1514	1/3 Ott 20Hz	Lin	dB	59,0	39,5	73,0	44,7	48,5	50,6
#1514	1/3 Ott 25Hz	Lin	dB	64,7	46,6	74,5	53,2	57,1	58,9
#1514	1/3 Ott 31.5Hz	Lin	dB	60,9	40,0	75,3	47,6	50,9	52,8
#1514	1/3 Ott 40Hz	Lin	dB	58,2	40,1	69,6	45,3	48,4	50,2
#1514	1/3 Ott 50Hz	Lin	dB	55,6	36,4	69,1	44,0	47,4	48,9
#1514	1/3 Ott 63Hz	Lin	dB	55,0	37,6	65,9	43,7	47,3	48,6
#1514	1/3 Ott 80Hz	Lin	dB	51,9	37,8	62,2	42,0	44,6	45,9
#1514	1/3 Ott 100Hz	Lin	dB	51,5	38,2	60,6	41,6	44,4	45,6
#1514	1/3 Ott 125Hz	Lin	dB	57,5	43,2	66,5	48,0	50,4	51,5
#1514	1/3 Ott 160Hz	Lin	dB	57,1	46,0	64,2	50,4	52,2	53,2
#1514	1/3 Ott 200Hz	Lin	dB	52,3	42,1	60,1	45,9	47,5	48,4
#1514	1/3 Ott 250Hz	Lin	dB	51,3	40,7	66,9	43,6	45,2	46,0
#1514	1/3 Ott 315Hz	Lin	dB	54,3	43,5	66,8	45,6	47,2	48,0
#1514	1/3 Ott 400Hz	Lin	dB	52,7	42,4	63,7	43,9	45,2	45,9
#1514	1/3 Ott 500Hz	Lin	dB	51,2	40,7	63,6	42,8	44,0	44,7
#1514	1/3 Ott 630Hz	Lin	dB	48,9	40,3	65,9	41,2	42,3	42,9
#1514	1/3 Ott 800Hz	Lin	dB	46,1	37,8	59,3	40,3	41,4	42,0
#1514	1/3 Ott 1kHz	Lin	dB	46,3	39,3	58,2	40,8	41,7	42,2
#1514	1/3 Ott 1.25kHz	Lin	dB	45,6	38,8	56,5	40,3	41,2	41,6
#1514	1/3 Ott 1.6kHz	Lin	dB	43,9	36,7	56,2	37,6	38,4	38,9
#1514	1/3 Ott 2kHz	Lin	dB	40,4	34,2	57,2	34,9	35,4	35,8
#1514	1/3 Ott 2.5kHz	Lin	dB	45,2	31,6	66,3	32,7	33,4	33,8
#1514	1/3 Ott 3.15kHz	Lin	dB	40,7	29,0	61,1	29,6	30,2	30,7
#1514	1/3 Ott 4kHz	Lin	dB	33,5	26,5	48,3	26,9	27,5	28,0
#1514	1/3 Ott 5kHz	Lin	dB	30,7	20,8	47,7	21,7	22,4	23,0
#1514	1/3 Ott 6.3kHz	Lin	dB	27,8	13,6	47,2	14,4	15,0	15,5
#1514	1/3 Ott 8kHz	Lin	dB	23,9	8,1	44,7	8,5	9,2	9,7

Misura M2:

File	2001.CMG								
Inizio	02/02/22 10:10:2	25:000							
Fine	02/02/22 10:13:2	25:800							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	88,1	86,9	90,1	87,0	87,2	87,3
#1514	Leq	С	dB	94,5	91,3	98,9	92,0	92,7	93,0
#1514	Picco	С	dB		101,2	108,5			
#1514	1/3 Ott 12.5Hz	Lin	dB	85,3	60,1	94,5	66,9	72,6	75,4
#1514	1/3 Ott 16Hz	Lin	dB	84,9	63,0	94,1	69,8	73,8	76,3
#1514	1/3 Ott 20Hz	Lin	dB	88,5	64,8	101,1	70,6	75,0	76,9
#1514	1/3 Ott 25Hz	Lin	dB	89,0	68,6	97,2	74,7	79,1	81,4
#1514	1/3 Ott 31.5Hz	Lin	dB	82,3	60,9	93,0	69,2	72,3	74,4
#1514	1/3 Ott 40Hz	Lin	dB	80,6	63,4	88,5	69,4	72,0	73,7
#1514	1/3 Ott 50Hz	Lin	dB	80,1	65,7	88,7	69,8	72,5	74,0
#1514	1/3 Ott 63Hz	Lin	dB	84,2	69,4	92,0	73,6	76,6	78,1
#1514	1/3 Ott 80Hz	Lin	dB	87,7	72,9	97,8	76,5	79,3	80,8
#1514	1/3 Ott 100Hz	Lin	dB	78,9	66,9	85,4	70,6	73,4	74,5
#1514	1/3 Ott 125Hz	Lin	dB	80,3	67,6	88,4	72,7	75,0	76,1
#1514	1/3 Ott 160Hz	Lin	dB	79,7	68,5	85,0	73,3	75,3	76,1
#1514	1/3 Ott 200Hz	Lin	dB	78,2	67,9	83,4	72,8	74,5	75,3
#1514	1/3 Ott 250Hz	Lin	dB	80,3	72,5	84,7	75,4	76,8	77,5
#1514	1/3 Ott 315Hz	Lin	dB	82,0	75,1	87,0	77,5	78,6	79,4
#1514	1/3 Ott 400Hz	Lin	dB	82,6	76,2	87,0	78,6	79,6	80,3
#1514	1/3 Ott 500Hz	Lin	dB	79,1	74,9	83,0	75,8	76,8	77,3
#1514	1/3 Ott 630Hz	Lin	dB	79,6	74,4	82,8	76,4	77,4	77,9
#1514	1/3 Ott 800Hz	Lin	dB	79,1	74,8	82,0	76,4	77,3	77,6
#1514	1/3 Ott 1kHz	Lin	dB	78,9	75,6	82,1	76,6	77,2	77,5
#1514	1/3 Ott 1.25kHz	Lin	dB	78,7	75,5	82,1	76,4	77,1	77,4
#1514	1/3 Ott 1.6kHz	Lin	dB	77,3	74,6	80,5	75,3	75,7	76,0
#1514	1/3 Ott 2kHz	Lin	dB	75,4	73,0	78,6	73,5	73,9	74,2
#1514	1/3 Ott 2.5kHz	Lin	dB	73,5	70,8	76,6	71,5	71,9	72,1
#1514	1/3 Ott 3.15kHz	Lin	dB	72,3	69,4	75,7	70,0	70,4	70,7
#1514	1/3 Ott 4kHz	Lin	dB	72,0	68,5	76,1	69,3	69,7	70,0
#1514	1/3 Ott 5kHz	Lin	dB	70,8	67,3	75,5	67,9	68,4	68,7
#1514	1/3 Ott 6.3kHz	Lin	dB	68,2	65,3	72,4	65,6	66,0	66,2
#1514	1/3 Ott 8kHz	Lin	dB	65,3	61,0	74,6	61,4	61,9	62,1

Misura M3:

File	3001.CMG								
Inizio	02/02/22 10:14:1	3:000							
Fine	02/02/22 10:17:1	3:000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	91,8	90,6	93,0	90,8	91,1	91,2
#1514	Leq	С	dB	96,9	94,9	98,9	95,5	95,8	96,0
#1514	Picco	С	dB		103,8	110,9			
#1514	1/3 Ott 12.5Hz	Lin	dB	76,0	53,4	84,6	59,0	63,8	66,6
#1514	1/3 Ott 16Hz	Lin	dB	80,7	55,4	88,3	64,5	70,1	72,5
#1514	1/3 Ott 20Hz	Lin	dB	80,5	61,4	89,4	66,9	70,1	72,3
#1514	1/3 Ott 25Hz	Lin	dB	86,8	63,8	93,9	72,5	75,9	78,2
#1514	1/3 Ott 31.5Hz	Lin	dB	80,1	60,7	88,9	68,5	71,7	73,5
#1514	1/3 Ott 40Hz	Lin	dB	79,5	62,3	87,4	68,4	71,4	73,5
#1514	1/3 Ott 50Hz	Lin	dB	86,6	69,2	94,1	75,4	78,4	80,3
#1514	1/3 Ott 63Hz	Lin	dB	86,3	70,2	93,2	75,6	78,8	80,3
#1514	1/3 Ott 80Hz	Lin	dB	79,4	69,0	86,7	71,0	73,4	74,6
#1514	1/3 Ott 100Hz	Lin	dB	81,5	70,3	87,4	73,9	75,9	76,9
#1514	1/3 Ott 125Hz	Lin	dB	82,9	73,1	88,4	76,2	78,1	79,3
#1514	1/3 Ott 160Hz	Lin	dB	86,7	77,5	91,5	80,1	82,3	83,2
#1514	1/3 Ott 200Hz	Lin	dB	85,2	77,3	90,3	79,3	81,0	81,7
#1514	1/3 Ott 250Hz	Lin	dB	85,5	78,7	90,9	80,0	81,4	82,2
#1514	1/3 Ott 315Hz	Lin	dB	86,2	79,3	91,0	81,7	82,8	83,6
#1514	1/3 Ott 400Hz	Lin	dB	86,3	81,5	90,7	82,4	83,7	84,2
#1514	1/3 Ott 500Hz	Lin	dB	85,8	81,0	90,0	82,5	83,4	83,8
#1514	1/3 Ott 630Hz	Lin	dB	84,4	80,1	87,2	81,4	82,2	82,6
#1514	1/3 Ott 800Hz	Lin	dB	84,2	80,3	87,3	81,7	82,3	82,7
#1514	1/3 Ott 1kHz	Lin	dB	83,0	78,9	86,0	80,7	81,3	81,6
#1514	1/3 Ott 1.25kHz	Lin	dB	81,1	78,3	83,3	79,2	79,6	79,9
#1514	1/3 Ott 1.6kHz	Lin	dB	79,4	76,5	81,5	77,5	78,1	78,4
#1514	1/3 Ott 2kHz	Lin	dB	76,7	74,6	78,5	75,1	75,5	75,7
#1514	1/3 Ott 2.5kHz	Lin	dB	75,1	72,6	77,0	73,3	73,8	74,0
#1514	1/3 Ott 3.15kHz	Lin	dB	74,4	72,5	76,5	72,9	73,2	73,5
#1514	1/3 Ott 4kHz	Lin	dB	75,4	72,9	78,6	73,8	74,2	74,4
#1514	1/3 Ott 5kHz	Lin	dB	70,7	69,3	72,0	69,7	69,9	70,1
#1514	1/3 Ott 6.3kHz	Lin	dB	68,8	67,4	70,2	67,8	68,1	68,2
#1514	1/3 Ott 8kHz	Lin	dB	65,7	64,4	66,7	64,7	64,9	65,1

Misura M4:

File	4001.CMG								
Inizio	02/02/22 10:18:0	9:000							
Fine	02/02/22 10:23:0	9:000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	85,8	82,8	87,9	84,0	84,8	84,9
#1514	Leq	С	dB	91,2	87,8	94,9	88,9	89,6	89,9
#1514	Picco	С	dB		97,6	105,0			
#1514	1/3 Ott 12.5Hz	Lin	dB	71,6	42,5	82,1	56,2	60,5	62,8
#1514	1/3 Ott 16Hz	Lin	dB	75,2	51,8	86,5	60,5	65,2	67,2
#1514	1/3 Ott 20Hz	Lin	dB	76,1	54,3	87,0	62,0	66,0	68,0
#1514	1/3 Ott 25Hz	Lin	dB	79,6	59,7	88,4	65,4	69,2	71,4
#1514	1/3 Ott 31.5Hz	Lin	dB	78,6	58,4	87,9	66,5	69,7	71,6
#1514	1/3 Ott 40Hz	Lin	dB	78,4	62,5	87,4	67,2	70,7	72,1
#1514	1/3 Ott 50Hz	Lin	dB	82,8	67,5	90,6	72,2	75,4	77,0
#1514	1/3 Ott 63Hz	Lin	dB	85,0	70,2	92,8	75,4	78,0	79,4
#1514	1/3 Ott 80Hz	Lin	dB	77,5	64,4	84,7	67,8	71,2	72,3
#1514	1/3 Ott 100Hz	Lin	dB	76,7	61,4	83,1	68,9	71,0	72,3
#1514	1/3 Ott 125Hz	Lin	dB	74,1	64,4	81,9	67,4	69,3	70,2
#1514	1/3 Ott 160Hz	Lin	dB	77,9	67,7	83,7	71,5	73,5	74,5
#1514	1/3 Ott 200Hz	Lin	dB	78,2	70,5	84,2	72,8	74,3	75,0
#1514	1/3 Ott 250Hz	Lin	dB	78,3	69,4	84,4	72,7	74,3	75,1
#1514	1/3 Ott 315Hz	Lin	dB	76,9	70,7	82,2	72,3	73,6	74,2
#1514	1/3 Ott 400Hz	Lin	dB	75,1	69,3	80,3	70,9	72,0	72,6
#1514	1/3 Ott 500Hz	Lin	dB	77,6	71,3	81,4	74,0	75,1	75,5
#1514	1/3 Ott 630Hz	Lin	dB	82,5	72,3	87,6	75,8	78,0	79,1
#1514	1/3 Ott 800Hz	Lin	dB	72,6	68,4	77,7	69,9	70,6	71,1
#1514	1/3 Ott 1kHz	Lin	dB	70,1	66,3	77,4	67,6	68,3	68,6
#1514	1/3 Ott 1.25kHz	Lin	dB	70,5	67,6	76,4	68,2	68,8	69,1
#1514	1/3 Ott 1.6kHz	Lin	dB	71,7	68,2	76,8	69,2	69,9	70,3
#1514	1/3 Ott 2kHz	Lin	dB	72,3	69,4	74,8	70,3	70,9	71,2
#1514	1/3 Ott 2.5kHz	Lin	dB	71,1	68,7	73,5	69,6	69,9	70,2
#1514	1/3 Ott 3.15kHz	Lin	dB	74,0	69,8	75,9	71,3	72,6	73,0
#1514	1/3 Ott 4kHz	Lin	dB	75,3	72,4	77,5	73,8	74,3	74,5
#1514	1/3 Ott 5kHz	Lin	dB	73,6	68,8	75,0	70,7	72,6	72,9
#1514	1/3 Ott 6.3kHz	Lin	dB	70,9	65,9	72,2	67,9	69,9	70,2
#1514	1/3 Ott 8kHz	Lin	dB	64,4	62,4	66,9	63,2	63,6	63,7

Misura M5:

File	5001.CMG								
Inizio	02/02/22 10:25:1	1:000							
Fine	02/02/22 10:30:1	1:000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	76,4	75,1	83,8	75,4	75,5	75,6
#1514	Leq	С	dB	81,0	78,4	86,2	79,0	79,5	79,8
#1514	Picco	С	dB		88,5	98,0			
#1514	1/3 Ott 12.5Hz	Lin	dB	69,2	44,4	78,6	53,0	57,9	60,1
#1514	1/3 Ott 16Hz	Lin	dB	72,5	51,6	80,8	57,0	62,1	64,2
#1514	1/3 Ott 20Hz	Lin	dB	73,0	53,4	82,0	59,3	63,1	65,1
#1514	1/3 Ott 25Hz	Lin	dB	75,3	53,2	85,0	61,1	65,1	67,1
#1514	1/3 Ott 31.5Hz	Lin	dB	66,4	46,8	75,4	53,7	57,0	58,9
#1514	1/3 Ott 40Hz	Lin	dB	61,2	42,5	76,7	49,7	52,8	54,5
#1514	1/3 Ott 50Hz	Lin	dB	68,2	51,0	82,5	57,1	60,0	61,7
#1514	1/3 Ott 63Hz	Lin	dB	70,8	57,0	78,7	60,3	63,2	64,8
#1514	1/3 Ott 80Hz	Lin	dB	64,6	48,7	71,9	55,9	58,1	59,5
#1514	1/3 Ott 100Hz	Lin	dB	63,6	52,8	72,8	55,9	58,2	59,4
#1514	1/3 Ott 125Hz	Lin	dB	66,8	56,0	74,0	59,5	61,7	62,8
#1514	1/3 Ott 160Hz	Lin	dB	66,5	55,6	73,8	60,2	62,1	62,9
#1514	1/3 Ott 200Hz	Lin	dB	71,1	63,0	76,0	66,1	67,5	68,3
#1514	1/3 Ott 250Hz	Lin	dB	71,5	64,4	76,5	66,8	68,0	68,8
#1514	1/3 Ott 315Hz	Lin	dB	65,8	57,0	73,8	61,2	62,3	63,0
#1514	1/3 Ott 400Hz	Lin	dB	66,9	61,5	77,8	63,1	64,1	64,7
#1514	1/3 Ott 500Hz	Lin	dB	68,4	63,0	81,9	64,6	65,6	66,1
#1514	1/3 Ott 630Hz	Lin	dB	66,0	60,5	78,1	62,2	63,1	63,5
#1514	1/3 Ott 800Hz	Lin	dB	65,6	61,0	80,3	62,3	63,0	63,4
#1514	1/3 Ott 1kHz	Lin	dB	64,9	61,1	76,8	61,8	62,4	62,8
#1514	1/3 Ott 1.25kHz	Lin	dB	64,3	61,2	72,4	61,9	62,5	62,8
#1514	1/3 Ott 1.6kHz	Lin	dB	66,5	62,9	73,2	64,3	64,9	65,2
#1514	1/3 Ott 2kHz	Lin	dB	63,1	60,1	71,4	61,0	61,5	61,8
#1514	1/3 Ott 2.5kHz	Lin	dB	63,9	61,3	74,8	61,9	62,4	62,6
#1514	1/3 Ott 3.15kHz	Lin	dB	63,6	61,6	66,8	62,2	62,6	62,8
#1514	1/3 Ott 4kHz	Lin	dB	64,1	62,3	66,1	62,8	63,1	63,3
#1514	1/3 Ott 5kHz	Lin	dB	63,5	61,9	65,3	62,3	62,6	62,8
#1514	1/3 Ott 6.3kHz	Lin	dB	63,6	62,2	66,1	62,5	62,7	62,9
#1514	1/3 Ott 8kHz	Lin	dB	63,1	61,7	66,2	62,0	62,2	62,4

Misura M6:

File	6001.CMG								
Inizio	02/02/22 10:38:2	27:000							
Fine	02/02/22 10:43:2	27:000			,		,	,	
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	79,1	75,4	82,4	77,7	78,1	78,3
#1514	Leq	С	dB	83,5	77,6	87,2	80,6	81,4	81,8
#1514	Picco	С	dB		88,9	102,5	ļ		
#1514	1/3 Ott 12.5Hz	Lin	dB	72,1	44,9	80,8	56,3	61,5	64,3
#1514	1/3 Ott 16Hz	Lin	dB	69,6	48,0	78,2	55,3	59,2	61,2
#1514	1/3 Ott 20Hz	Lin	dB	74,2	53,9	83,3	59,8	64,5	66,2
#1514	1/3 Ott 25Hz	Lin	dB	79,8	60,5	88,9	65,4	69,9	71,8
#1514	1/3 Ott 31.5Hz	Lin	dB	73,9	53,7	82,8	61,3	65,1	66,9
#1514	1/3 Ott 40Hz	Lin	dB	79,2	63,4	85,3	69,5	72,8	74,2
#1514	1/3 Ott 50Hz	Lin	dB	75,9	57,5	83,9	65,3	68,2	69,8
#1514	1/3 Ott 63Hz	Lin	dB	70,1	54,1	78,4	60,1	63,0	64,5
#1514	1/3 Ott 80Hz	Lin	dB	64,2	50,0	71,6	55,6	58,1	59,4
#1514	1/3 Ott 100Hz	Lin	dB	62,1	49,3	69,8	54,4	56,5	57,6
#1514	1/3 Ott 125Hz	Lin	dB	64,4	49,0	70,7	56,6	59,2	60,2
#1514	1/3 Ott 160Hz	Lin	dB	67,5	56,2	72,4	60,2	62,5	63,6
#1514	1/3 Ott 200Hz	Lin	dB	63,6	54,7	73,5	57,4	59,4	60,2
#1514	1/3 Ott 250Hz	Lin	dB	62,2	53,8	73,1	57,1	58,5	59,3
#1514	1/3 Ott 315Hz	Lin	dB	62,3	55,4	72,1	57,2	58,5	59,3
#1514	1/3 Ott 400Hz	Lin	dB	60,6	54,1	77,3	55,8	57,0	57,4
#1514	1/3 Ott 500Hz	Lin	dB	62,0	53,6	77,1	56,3	57,2	57,8
#1514	1/3 Ott 630Hz	Lin	dB	62,0	52,8	76,0	55,5	56,4	56,9
#1514	1/3 Ott 800Hz	Lin	dB	61,8	56,7	78,6	57,5	58,6	59,1
#1514	1/3 Ott 1kHz	Lin	dB	60,7	56,0	75,0	57,7	58,4	58,8
#1514	1/3 Ott 1.25kHz	Lin	dB	61,7	54,6	74,0	58,3	59,2	59,6
#1514	1/3 Ott 1.6kHz	Lin	dB	61,6	57,2	72,7	59,3	60,0	60,3
#1514	1/3 Ott 2kHz	Lin	dB	64,9	61,5	68,8	62,1	62,7	63,1
#1514	1/3 Ott 2.5kHz	Lin	dB	67,3	64,9	70,9	65,5	66,0	66,3
#1514	1/3 Ott 3.15kHz	Lin	dB	73,4	68,9	76,9	71,4	72,0	72,2
#1514	1/3 Ott 4kHz	Lin	dB	69,7	65,9	72,4	67,6	68,3	68,6
#1514	1/3 Ott 5kHz	Lin	dB	68,5	63,8	70,6	65,8	66,6	67,1
#1514	1/3 Ott 6.3kHz	Lin	dB	68,2	61,3	70,8	65,3	66,2	66,6
#1514	1/3 Ott 8kHz	Lin	dB	68,5	59,5	71,4	65,4	66,4	66,9

Misura M7:

File	7001.CMG								
Inizio	02/02/22 10:45:2	26:000							
Fine	02/02/22 10:50:2	26:000							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	90,5	81,9	94,9	83,7	85,3	87,2
#1514	Leq	С	dB	91,6	85,5	96,2	87,1	88,9	89,6
#1514	Picco	С	dB		94,4	106,4			
#1514	1/3 Ott 12.5Hz	Lin	dB	65,6	42,1	78,6	49,7	53,8	56,2
#1514	1/3 Ott 16Hz	Lin	dB	70,7	48,3	81,1	55,5	60,0	62,2
#1514	1/3 Ott 20Hz	Lin	dB	71,3	51,2	86,3	57,0	60,6	62,7
#1514	1/3 Ott 25Hz	Lin	dB	73,7	52,2	87,1	58,4	63,2	65,1
#1514	1/3 Ott 31.5Hz	Lin	dB	69,8	51,1	81,3	56,7	60,1	61,8
#1514	1/3 Ott 40Hz	Lin	dB	76,3	58,0	89,6	66,4	69,3	70,9
#1514	1/3 Ott 50Hz	Lin	dB	86,7	67,4	96,6	74,7	78,9	80,7
#1514	1/3 Ott 63Hz	Lin	dB	67,4	54,8	80,5	59,2	61,2	62,3
#1514	1/3 Ott 80Hz	Lin	dB	69,6	53,7	80,3	60,4	63,0	64,3
#1514	1/3 Ott 100Hz	Lin	dB	71,4	57,3	82,0	61,9	64,3	65,7
#1514	1/3 Ott 125Hz	Lin	dB	65,8	56,0	74,7	58,9	60,9	61,8
#1514	1/3 Ott 160Hz	Lin	dB	68,9	56,3	84,7	60,9	62,7	63,7
#1514	1/3 Ott 200Hz	Lin	dB	69,6	60,2	82,7	63,9	65,4	66,1
#1514	1/3 Ott 250Hz	Lin	dB	74,1	64,4	85,7	66,9	69,5	70,8
#1514	1/3 Ott 315Hz	Lin	dB	70,4	61,9	83,0	63,8	65,5	66,1
#1514	1/3 Ott 400Hz	Lin	dB	70,9	63,7	84,7	65,8	66,9	67,5
#1514	1/3 Ott 500Hz	Lin	dB	77,3	69,8	83,0	71,9	73,4	74,2
#1514	1/3 Ott 630Hz	Lin	dB	78,7	69,0	82,4	71,8	74,4	76,1
#1514	1/3 Ott 800Hz	Lin	dB	78,0	71,6	85,9	73,9	75,1	75,7
#1514	1/3 Ott 1kHz	Lin	dB	78,0	69,8	85,4	72,5	74,0	74,9
#1514	1/3 Ott 1.25kHz	Lin	dB	73,9	68,4	88,3	70,1	71,2	71,6
#1514	1/3 Ott 1.6kHz	Lin	dB	72,9	67,8	78,3	68,8	70,0	71,2
#1514	1/3 Ott 2kHz	Lin	dB	87,9	72,9	93,1	76,2	79,7	82,8
#1514	1/3 Ott 2.5kHz	Lin	dB	73,0	67,3	83,0	68,8	70,4	71,2
#1514	1/3 Ott 3.15kHz	Lin	dB	69,6	65,9	81,0	66,7	67,9	68,3
#1514	1/3 Ott 4kHz	Lin	dB	74,1	66,1	79,3	67,2	68,4	70,4
#1514	1/3 Ott 5kHz	Lin	dB	70,6	63,1	77,3	64,5	65,9	67,6
#1514	1/3 Ott 6.3kHz	Lin	dB	66,3	60,5	76,2	62,1	63,8	64,8
#1514	1/3 Ott 8kHz	Lin	dB	62,0	57,4	73,8	58,1	60,2	60,7

Misura M8:

File	8001.CMG								
Inizio	02/02/22 10:52:3	86:000							
Fine	02/02/22 10:56:1	3:100							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	93,6	88,7	97,4	89,7	90,6	91,2
#1514	Leq	С	dB	95,3	91,4	98,4	92,9	93,5	93,9
#1514	Picco	С	dB		101,5	108,9			
#1514	1/3 Ott 12.5Hz	Lin	dB	73,5	47,8	82,1	56,9	62,3	64,7
#1514	1/3 Ott 16Hz	Lin	dB	71,5	51,9	81,9	57,5	61,3	63,3
#1514	1/3 Ott 20Hz	Lin	dB	83,1	59,7	88,4	68,4	74,6	76,8
#1514	1/3 Ott 25Hz	Lin	dB	76,1	58,1	85,6	63,2	66,6	68,8
#1514	1/3 Ott 31.5Hz	Lin	dB	82,0	69,2	90,8	73,2	75,8	76,8
#1514	1/3 Ott 40Hz	Lin	dB	89,2	77,3	94,8	82,5	85,3	86,4
#1514	1/3 Ott 50Hz	Lin	dB	79,4	61,4	88,9	66,9	70,5	72,5
#1514	1/3 Ott 63Hz	Lin	dB	80,3	66,9	86,5	72,0	74,3	75,7
#1514	1/3 Ott 80Hz	Lin	dB	87,0	74,9	92,5	78,4	80,9	81,9
#1514	1/3 Ott 100Hz	Lin	dB	80,9	66,1	86,9	73,6	75,8	76,8
#1514	1/3 Ott 125Hz	Lin	dB	78,7	69,5	85,2	72,4	74,4	75,2
#1514	1/3 Ott 160Hz	Lin	dB	79,3	68,2	86,4	72,2	74,5	75,4
#1514	1/3 Ott 200Hz	Lin	dB	74,2	66,2	81,3	68,4	70,2	71,2
#1514	1/3 Ott 250Hz	Lin	dB	75,9	68,8	80,4	71,0	72,5	73,2
#1514	1/3 Ott 315Hz	Lin	dB	80,0	71,8	84,3	75,0	76,4	77,1
#1514	1/3 Ott 400Hz	Lin	dB	72,9	67,7	83,2	68,8	70,1	70,7
#1514	1/3 Ott 500Hz	Lin	dB	74,2	68,7	86,1	70,5	71,6	72,1
#1514	1/3 Ott 630Hz	Lin	dB	74,2	68,5	87,5	70,7	71,6	72,0
#1514	1/3 Ott 800Hz	Lin	dB	72,4	68,7	86,8	69,5	70,3	70,6
#1514	1/3 Ott 1kHz	Lin	dB	72,6	69,2	82,1	69,9	70,7	71,1
#1514	1/3 Ott 1.25kHz	Lin	dB	74,3	70,7	81,1	71,9	72,6	73,0
#1514	1/3 Ott 1.6kHz	Lin	dB	77,0	73,5	80,2	74,2	74,8	75,2
#1514	1/3 Ott 2kHz	Lin	dB	90,8	79,4	95,9	83,2	85,4	86,7
#1514	1/3 Ott 2.5kHz	Lin	dB	75,5	73,3	77,4	73,9	74,4	74,7
#1514	1/3 Ott 3.15kHz	Lin	dB	76,5	74,6	78,6	75,1	75,5	75,7
#1514	1/3 Ott 4kHz	Lin	dB	84,3	79,0	91,7	79,7	80,5	80,9
#1514	1/3 Ott 5kHz	Lin	dB	78,2	76,3	81,1	76,8	77,2	77,3
#1514	1/3 Ott 6.3kHz	Lin	dB	77,8	74,9	82,8	75,4	75,9	76,1
#1514	1/3 Ott 8kHz	Lin	dB	72,1	70,7	74,0	71,0	71,3	71,4

Misura M9:

File	9001.CMG									
Inizio	02/02/22 10:56:4	7:000								
Fine	02/02/22 11:00:1	9:700								
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90	
#1514	Leq	Α	dB	96,1	89,2	100,0	91,0	92,2	93,1	
#1514	Leq	С	dB	96,4	91,0	99,5	93,0	93,8	94,3	
#1514	Picco	С	dB		101,1	108,4				
#1514	1/3 Ott 12.5Hz	Lin	dB	75,9	53,4	84,3	58,6	63,5	66,1	
#1514	1/3 Ott 16Hz	Lin	dB	70,0	46,5	79,1	56,2	60,0	61,7	
#1514	1/3 Ott 20Hz	Lin	dB	82,3	58,9	87,2	71,2	76,1	77,9	
#1514	1/3 Ott 25Hz	Lin	dB	75,6	54,0	84,4	62,5	66,3	68,2	
#1514	1/3 Ott 31.5Hz	Lin	dB	81,4	70,0	89,0	73,6	76,0	77,2	
#1514	1/3 Ott 40Hz	Lin	dB	89,2	80,8	94,3	84,5	86,0	86,7	
#1514	1/3 Ott 50Hz	Lin	dB	76,3	60,7	83,8	65,7	68,9	70,3	
#1514	1/3 Ott 63Hz	Lin	dB	76,2	62,3	82,8	67,1	69,9	70,9	
#1514	1/3 Ott 80Hz	Lin	dB	83,4	73,2	88,3	76,8	78,8	79,9	
#1514	1/3 Ott 100Hz	Lin	dB	80,6	68,4	89,9	72,1	74,3	75,6	
#1514	1/3 Ott 125Hz	Lin	dB	75,7	64,8	81,9	69,3	71,0	72,0	
#1514	1/3 Ott 160Hz	Lin	dB	74,7	65,4	81,1	68,2	70,3	71,1	
#1514	1/3 Ott 200Hz	Lin	dB	74,2	65,6	79,8	68,5	70,2	71,0	
#1514	1/3 Ott 250Hz	Lin	dB	75,1	67,0	81,2	69,9	71,3	72,1	
#1514	1/3 Ott 315Hz	Lin	dB	76,1	68,0	80,7	71,6	72,8	73,3	
#1514	1/3 Ott 400Hz	Lin	dB	72,4	66,3	76,7	68,9	69,8	70,3	
#1514	1/3 Ott 500Hz	Lin	dB	73,2	67,9	80,5	69,8	70,7	71,2	
#1514	1/3 Ott 630Hz	Lin	dB	73,4	68,7	80,9	69,9	70,8	71,3	
#1514	1/3 Ott 800Hz	Lin	dB	72,9	68,6	78,3	69,6	70,5	71,0	
#1514	1/3 Ott 1kHz	Lin	dB	76,6	73,3	80,0	74,2	74,8	75,2	
#1514	1/3 Ott 1.25kHz	Lin	dB	71,7	68,6	78,3	69,2	69,8	70,1	
#1514	1/3 Ott 1.6kHz	Lin	dB	78,5	72,1	82,8	74,1	75,2	75,9	
#1514	1/3 Ott 2kHz	Lin	dB	94,7	86,3	98,9	88,4	90,2	91,3	
#1514	1/3 Ott 2.5kHz	Lin	dB	72,5	70,4	76,8	70,9	71,3	71,5	
#1514	1/3 Ott 3.15kHz	Lin	dB	73,2	70,8	77,4	71,7	72,1	72,3	
#1514	1/3 Ott 4kHz	Lin	dB	79,3	74,0	85,9	74,8	75,6	76,1	
#1514	1/3 Ott 5kHz	Lin	dB	72,1	70,0	76,4	70,5	70,9	71,1	
#1514	1/3 Ott 6.3kHz	Lin	dB	71,8	68,9	76,3	69,3	69,8	70,1	
#1514	1/3 Ott 8kHz	Lin	dB	66,7	64,2	74,2	64,6	65,1	65,3	

Misura M10:

File	10001.CMG									
Inizio	02/02/22 11:01:0	3:000								
Fine	02/02/22 11:06:0	3:000								
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90	
#1514	Leq	Α	dB	86,5	82,9	94,5	83,6	84,1	84,4	
#1514	Leq	С	dB	99,7	90,6	104,1	91,5	92,8	93,9	
#1514	Picco	С	dB		99,9	112,0				
#1514	1/3 Ott 12.5Hz	Lin	dB	80,1	52,3	88,5	63,8	68,8	71,2	
#1514	1/3 Ott 16Hz	Lin	dB	86,2	65,5	93,1	72,4	76,8	79,2	
#1514	1/3 Ott 20Hz	Lin	dB	104,3	68,9	108,1	79,6	87,6	92,9	
#1514	1/3 Ott 25Hz	Lin	dB	92,8	69,9	101,8	76,5	80,3	82,6	
#1514	1/3 Ott 31.5Hz	Lin	dB	79,0	61,1	88,7	67,2	70,4	72,0	
#1514	1/3 Ott 40Hz	Lin	dB	79,9	62,5	88,8	67,4	70,8	72,6	
#1514	1/3 Ott 50Hz	Lin	dB	77,5	62,6	85,9	66,2	69,6	71,3	
#1514	1/3 Ott 63Hz	Lin	dB	79,4	65,0	87,0	69,9	72,4	73,7	
#1514	1/3 Ott 80Hz	Lin	dB	83,0	69,1	91,0	74,4	76,8	78,1	
#1514	1/3 Ott 100Hz	Lin	dB	86,0	74,6	93,6	78,2	80,4	81,5	
#1514	1/3 Ott 125Hz	Lin	dB	86,0	69,7	93,6	77,3	80,1	81,2	
#1514	1/3 Ott 160Hz	Lin	dB	77,8	69,7	84,8	71,5	73,2	74,2	
#1514	1/3 Ott 200Hz	Lin	dB	75,9	67,4	81,8	70,4	71,9	72,7	
#1514	1/3 Ott 250Hz	Lin	dB	78,4	69,9	88,6	72,4	74,1	74,9	
#1514	1/3 Ott 315Hz	Lin	dB	77,1	69,1	83,8	72,2	73,5	74,2	
#1514	1/3 Ott 400Hz	Lin	dB	76,9	70,8	85,7	72,8	73,9	74,6	
#1514	1/3 Ott 500Hz	Lin	dB	76,7	71,0	84,3	72,7	73,8	74,4	
#1514	1/3 Ott 630Hz	Lin	dB	74,1	69,6	86,6	70,7	71,5	71,9	
#1514	1/3 Ott 800Hz	Lin	dB	72,9	68,5	81,6	69,8	70,6	71,1	
#1514	1/3 Ott 1kHz	Lin	dB	73,2	68,8	87,8	70,3	71,1	71,4	
#1514	1/3 Ott 1.25kHz	Lin	dB	72,2	68,6	85,6	69,6	70,2	70,6	
#1514	1/3 Ott 1.6kHz	Lin	dB	72,5	68,5	84,4	69,8	70,3	70,7	
#1514	1/3 Ott 2kHz	Lin	dB	82,0	71,7	90,8	73,1	74,9	76,1	
#1514	1/3 Ott 2.5kHz	Lin	dB	70,4	67,2	81,8	68,2	68,6	68,9	
#1514	1/3 Ott 3.15kHz	Lin	dB	70,6	67,4	81,6	68,5	69,1	69,4	
#1514	1/3 Ott 4kHz	Lin	dB	75,3	69,2	82,5	70,5	71,4	71,9	
#1514	1/3 Ott 5kHz	Lin	dB	68,4	64,7	74,4	65,4	66,9	67,3	
#1514	1/3 Ott 6.3kHz	Lin	dB	67,1	62,0	71,5	63,3	65,2	65,5	
#1514	1/3 Ott 8kHz	Lin	dB	61,9	58,0	66,8	59,1	60,5	60,7	

Misura M11:

File	11001.CMG									
Inizio	02/02/22 11:09:0	4:000								
Fine	02/02/22 11:10:1	6:600								
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90	
#1514	Leq	Α	dB	64,2	61,4	76,3	61,5	62,1	62,4	
#1514	Leq	С	dB	74,8	70,7	81,7	71,4	72,2	72,6	
#1514	Picco	С	dB		79,6	90,8				
#1514	1/3 Ott 12.5Hz	Lin	dB	60,0	38,3	70,0	44,0	47,6	50,0	
#1514	1/3 Ott 16Hz	Lin	dB	67,5	50,8	73,6	55,9	60,1	61,8	
#1514	1/3 Ott 20Hz	Lin	dB	66,4	37,1	74,4	48,9	54,3	56,3	
#1514	1/3 Ott 25Hz	Lin	dB	64,2	42,1	72,0	48,7	54,0	55,7	
#1514	1/3 Ott 31.5Hz	Lin	dB	62,6	46,2	71,3	51,4	55,1	56,7	
#1514	1/3 Ott 40Hz	Lin	dB	67,9	56,8	73,3	60,5	62,8	64,1	
#1514	1/3 Ott 50Hz	Lin	dB	62,7	46,3	71,7	50,9	54,6	56,1	
#1514	1/3 Ott 63Hz	Lin	dB	63,4	53,4	70,1	54,6	57,1	58,3	
#1514	1/3 Ott 80Hz	Lin	dB	70,4	55,0	76,6	58,8	62,5	63,7	
#1514	1/3 Ott 100Hz	Lin	dB	62,7	53,5	68,3	54,5	57,3	58,5	
#1514	1/3 Ott 125Hz	Lin	dB	61,4	52,8	69,7	54,1	56,1	57,2	
#1514	1/3 Ott 160Hz	Lin	dB	61,9	51,9	74,1	54,4	56,6	57,5	
#1514	1/3 Ott 200Hz	Lin	dB	58,8	50,8	66,4	53,0	54,7	55,6	
#1514	1/3 Ott 250Hz	Lin	dB	57,5	51,1	68,0	52,4	54,2	54,7	
#1514	1/3 Ott 315Hz	Lin	dB	58,2	51,7	72,7	52,7	54,5	55,0	
#1514	1/3 Ott 400Hz	Lin	dB	55,5	49,5	69,2	51,0	52,1	52,8	
#1514	1/3 Ott 500Hz	Lin	dB	56,9	48,9	77,5	50,0	51,0	51,5	
#1514	1/3 Ott 630Hz	Lin	dB	55,0	48,2	72,8	48,9	50,1	50,7	
#1514	1/3 Ott 800Hz	Lin	dB	53,0	48,7	66,1	49,3	50,1	50,6	
#1514	1/3 Ott 1kHz	Lin	dB	53,4	49,6	66,1	50,1	50,8	51,3	
#1514	1/3 Ott 1.25kHz	Lin	dB	52,9	49,4	65,9	49,6	50,3	50,8	
#1514	1/3 Ott 1.6kHz	Lin	dB	51,8	47,5	70,4	48,8	49,5	49,8	
#1514	1/3 Ott 2kHz	Lin	dB	56,8	49,9	65,7	50,4	51,4	52,0	
#1514	1/3 Ott 2.5kHz	Lin	dB	48,8	46,4	58,8	46,9	47,3	47,5	
#1514	1/3 Ott 3.15kHz	Lin	dB	48,2	45,8	54,9	46,2	46,8	47,0	
#1514	1/3 Ott 4kHz	Lin	dB	49,7	44,2	55,8	45,6	46,3	46,7	
#1514	1/3 Ott 5kHz	Lin	dB	42,2	40,2	54,0	40,4	40,8	41,1	
#1514	1/3 Ott 6.3kHz	Lin	dB	37,9	35,4	53,0	35,8	36,1	36,3	
#1514	1/3 Ott 8kHz	Lin	dB	35,3	32,5	50,2	32,9	33,3	33,6	

Misura M12:

File	17001.CMG								
Inizio	02/02/22 14:47:2	21:000							
Fine	02/02/22 14:50:2	25:500							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	73,4	68,9	85,1	69,3	70,0	70,8
#1514	Leq	С	dB	79,3	74,4	86,9	75,5	76,2	76,7
#1514	Picco	С	dB		84,3	97,3			
#1514	1/3 Ott 12.5Hz	Lin	dB	69,1	43,0	83,7	49,1	53,6	55,9
#1514	1/3 Ott 16Hz	Lin	dB	69,4	49,1	84,9	54,5	59,1	61,0
#1514	1/3 Ott 20Hz	Lin	dB	66,1	45,9	81,5	49,5	52,7	54,9
#1514	1/3 Ott 25Hz	Lin	dB	66,2	40,6	79,6	50,9	54,4	56,4
#1514	1/3 Ott 31.5Hz	Lin	dB	63,9	42,0	78,9	46,5	51,0	52,7
#1514	1/3 Ott 40Hz	Lin	dB	64,2	45,4	76,9	50,5	53,8	55,6
#1514	1/3 Ott 50Hz	Lin	dB	66,0	48,1	78,0	54,5	57,8	59,6
#1514	1/3 Ott 63Hz	Lin	dB	65,8	55,1	74,1	57,6	59,8	61,0
#1514	1/3 Ott 80Hz	Lin	dB	76,1	64,2	80,6	68,1	70,5	71,8
#1514	1/3 Ott 100Hz	Lin	dB	66,7	55,0	72,9	59,3	61,6	62,7
#1514	1/3 Ott 125Hz	Lin	dB	64,5	54,8	70,6	57,4	59,2	60,3
#1514	1/3 Ott 160Hz	Lin	dB	62,5	51,3	73,4	53,8	55,8	56,9
#1514	1/3 Ott 200Hz	Lin	dB	61,0	50,5	72,4	52,9	54,7	55,5
#1514	1/3 Ott 250Hz	Lin	dB	57,3	46,1	73,4	50,5	52,4	53,1
#1514	1/3 Ott 315Hz	Lin	dB	62,1	52,0	76,0	53,8	55,3	56,2
#1514	1/3 Ott 400Hz	Lin	dB	63,2	49,1	79,7	52,0	53,5	54,1
#1514	1/3 Ott 500Hz	Lin	dB	66,1	50,3	82,7	52,6	54,0	54,5
#1514	1/3 Ott 630Hz	Lin	dB	64,3	51,7	82,3	52,5	53,5	54,0
#1514	1/3 Ott 800Hz	Lin	dB	62,0	52,5	83,0	53,1	53,8	54,2
#1514	1/3 Ott 1kHz	Lin	dB	59,7	53,3	76,4	54,4	55,1	55,6
#1514	1/3 Ott 1.25kHz	Lin	dB	60,2	53,3	75,9	54,3	55,3	56,0
#1514	1/3 Ott 1.6kHz	Lin	dB	59,0	51,0	74,2	52,9	53,8	54,6
#1514	1/3 Ott 2kHz	Lin	dB	63,7	56,3	74,3	57,9	59,3	60,4
#1514	1/3 Ott 2.5kHz	Lin	dB	60,0	55,5	70,4	56,1	56,7	57,4
#1514	1/3 Ott 3.15kHz	Lin	dB	64,0	60,9	67,5	61,8	62,5	62,8
#1514	1/3 Ott 4kHz	Lin	dB	62,6	56,4	65,7	57,1	58,0	58,5
#1514	1/3 Ott 5kHz	Lin	dB	62,3	56,2	65,2	56,6	57,3	57,7
#1514	1/3 Ott 6.3kHz	Lin	dB	59,4	54,8	64,2	55,3	55,8	56,3
#1514	1/3 Ott 8kHz	Lin	dB	58,0	55,5	62,6	55,7	56,2	56,4

Misura M13:

File	18001.CMG								
Inizio	02/02/22 14:53:4	8:000							
Fine	02/02/22 14:55:1	8:200							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	62,6	54,8	68,5	55,4	57,5	58,6
#1514	Leq	С	dB	67,9	63,8	72,7	64,3	65,2	65,6
#1514	Picco	С	dB		73,5	84,7			
#1514	1/3 Ott 12.5Hz	Lin	dB	61,9	40,2	71,6	45,0	50,8	53,5
#1514	1/3 Ott 16Hz	Lin	dB	67,5	55,1	73,1	58,9	61,4	63,3
#1514	1/3 Ott 20Hz	Lin	dB	63,8	46,6	72,4	50,1	53,3	55,4
#1514	1/3 Ott 25Hz	Lin	dB	63,8	44,1	70,0	48,8	55,3	57,1
#1514	1/3 Ott 31.5Hz	Lin	dB	55,8	38,6	65,4	43,3	47,0	48,5
#1514	1/3 Ott 40Hz	Lin	dB	55,8	38,2	66,2	43,6	46,1	48,2
#1514	1/3 Ott 50Hz	Lin	dB	55,5	34,4	68,2	41,8	45,3	47,2
#1514	1/3 Ott 63Hz	Lin	dB	50,6	38,5	61,0	41,3	43,7	45,0
#1514	1/3 Ott 80Hz	Lin	dB	57,4	44,1	63,9	46,9	50,1	51,7
#1514	1/3 Ott 100Hz	Lin	dB	51,8	42,7	61,1	43,9	45,7	46,9
#1514	1/3 Ott 125Hz	Lin	dB	53,5	43,1	60,8	46,4	48,2	49,1
#1514	1/3 Ott 160Hz	Lin	dB	52,2	42,2	60,1	45,3	46,9	47,9
#1514	1/3 Ott 200Hz	Lin	dB	51,9	42,8	63,5	44,0	46,0	47,0
#1514	1/3 Ott 250Hz	Lin	dB	49,5	39,7	59,6	42,2	44,2	45,1
#1514	1/3 Ott 315Hz	Lin	dB	49,4	40,8	58,7	43,3	44,7	45,6
#1514	1/3 Ott 400Hz	Lin	dB	50,0	43,9	62,3	44,6	45,6	46,1
#1514	1/3 Ott 500Hz	Lin	dB	50,1	42,9	60,2	44,1	45,2	45,9
#1514	1/3 Ott 630Hz	Lin	dB	49,6	41,6	59,8	43,6	44,5	45,0
#1514	1/3 Ott 800Hz	Lin	dB	50,0	42,4	66,8	43,2	44,0	44,5
#1514	1/3 Ott 1kHz	Lin	dB	51,1	43,1	60,6	43,8	44,9	45,4
#1514	1/3 Ott 1.25kHz	Lin	dB	52,6	42,5	63,4	43,4	44,5	45,1
#1514	1/3 Ott 1.6kHz	Lin	dB	49,8	42,4	59,5	43,3	44,3	45,0
#1514	1/3 Ott 2kHz	Lin	dB	49,9	42,2	59,0	43,7	45,1	45,7
#1514	1/3 Ott 2.5kHz	Lin	dB	50,2	41,4	57,5	42,5	44,8	45,8
#1514	1/3 Ott 3.15kHz	Lin	dB	53,4	38,8	58,6	40,3	42,6	48,7
#1514	1/3 Ott 4kHz	Lin	dB	53,9	36,2	59,4	37,3	39,4	46,1
#1514	1/3 Ott 5kHz	Lin	dB	52,4	32,6	57,0	33,4	35,8	42,4
#1514	1/3 Ott 6.3kHz	Lin	dB	49,7	27,1	56,3	28,8	31,9	37,5
#1514	1/3 Ott 8kHz	Lin	dB	42,7	21,2	50,9	22,3	25,1	31,0

Misura M14:

File	19001.CMG								
Inizio	02/02/22 15:00:3	6:000							
Fine	02/02/22 15:03:3	9:300							
Canale	Tipo	Wgt	Unit	Leq	Lmin	Lmax	L99	L95	L90
#1514	Leq	Α	dB	58,1	40,4	80,7	41,6	43,5	44,4
#1514	Leq	С	dB	69,9	54,9	84,7	56,7	58,7	60,1
#1514	Picco	С	dB		62,1	96,4			
#1514	1/3 Ott 12.5Hz	Lin	dB	68,2	31,2	88,3	41,7	48,4	50,9
#1514	1/3 Ott 16Hz	Lin	dB	67,2	39,3	85,5	47,1	51,8	54,1
#1514	1/3 Ott 20Hz	Lin	dB	65,4	36,5	82,7	44,1	48,4	50,8
#1514	1/3 Ott 25Hz	Lin	dB	67,6	36,3	82,5	48,0	51,0	53,5
#1514	1/3 Ott 31.5Hz	Lin	dB	63,1	34,4	82,5	43,1	47,4	49,4
#1514	1/3 Ott 40Hz	Lin	dB	61,3	34,4	83,1	40,5	44,5	46,5
#1514	1/3 Ott 50Hz	Lin	dB	59,3	28,4	78,0	37,3	41,2	43,3
#1514	1/3 Ott 63Hz	Lin	dB	57,7	29,0	76,6	36,6	39,4	41,4
#1514	1/3 Ott 80Hz	Lin	dB	54,4	28,0	73,8	34,0	37,2	38,9
#1514	1/3 Ott 100Hz	Lin	dB	57,3	30,2	70,7	34,8	38,3	40,4
#1514	1/3 Ott 125Hz	Lin	dB	56,8	31,7	74,1	35,3	38,2	39,8
#1514	1/3 Ott 160Hz	Lin	dB	52,0	32,2	68,8	35,3	38,6	40,2
#1514	1/3 Ott 200Hz	Lin	dB	48,5	29,9	65,9	33,8	35,9	37,2
#1514	1/3 Ott 250Hz	Lin	dB	48,8	28,7	66,7	32,9	35,4	36,7
#1514	1/3 Ott 315Hz	Lin	dB	47,7	30,7	65,2	32,4	34,6	36,1
#1514	1/3 Ott 400Hz	Lin	dB	46,4	28,8	67,5	32,4	33,8	35,1
#1514	1/3 Ott 500Hz	Lin	dB	47,1	28,7	72,3	32,5	33,9	34,9
#1514	1/3 Ott 630Hz	Lin	dB	48,3	29,3	73,5	31,8	34,1	35,4
#1514	1/3 Ott 800Hz	Lin	dB	47,5	29,2	69,9	30,9	32,7	33,8
#1514	1/3 Ott 1kHz	Lin	dB	47,9	27,0	73,0	30,0	31,7	32,9
#1514	1/3 Ott 1.25kHz	Lin	dB	48,1	28,3	73,8	29,7	31,0	32,0
#1514	1/3 Ott 1.6kHz	Lin	dB	47,7	27,0	72,0	28,3	30,3	31,4
#1514	1/3 Ott 2kHz	Lin	dB	47,4	24,6	70,9	27,1	28,8	29,8
#1514	1/3 Ott 2.5kHz	Lin	dB	50,4	24,5	72,4	26,2	28,3	29,3
#1514	1/3 Ott 3.15kHz	Lin	dB	44,2	22,7	66,0	24,5	26,6	27,6
#1514	1/3 Ott 4kHz	Lin	dB	41,4	19,2	63,7	22,4	24,4	25,7
#1514	1/3 Ott 5kHz	Lin	dB	39,5	16,5	61,6	19,4	21,9	23,3
#1514	1/3 Ott 6.3kHz	Lin	dB	38,1	11,2	63,3	14,8	20,0	21,3
#1514	1/3 Ott 8kHz	Lin	dB	34,7	9,7	58,6	12,2	16,6	18,5